
Decentralized Naming inDistributed Computer SystemsTimothy Paul MannAbstractDesigning a global character-string naming facility is an important and di�cult problemin distributed systems. Providing global names|names that have the same meaning on anyparticipating machine|is a vital step in welding a collection of individual computers intoa single, coherent system. But the nature of large distributed systems makes it di�cult toimplement global naming with acceptable e�ciency, fault tolerance, and security: networkcommunication is costly, system components can fail independently, and parts of the systemmay belong to many autonomous and mutually-suspicious groups. Existing name servicedesigns do not solve the problem in full; even the best current designs do not have thee�ciency or capacity to name every object in a large system|they generally name onlyhosts or mailboxes, not �les.This thesis introduces a new paradigm for name service called decentralized naming.Directories at di�erent levels of the global naming hierarchy are implemented using di�erenttechniques. The uppermost (global) level employs conventional distributed name serversfor scalability, while at lower (regional and local) levels, naming is handled directly bythe managers of the named objects. The name mapping protocol uses multicast for faulttolerance and a specialized caching technique for e�ciency. A capability system providessecurity against counterfeit replies to name lookup requests.The multicast name mapping technique is shown to have optimum resiliency, in thesense that whenever an object is accessible at all, it is accessible by name. An analyticalmodel of cache performance is presented, is validated by comparison with measurementson a prototype implementation, and is used to set a limit on how large directories can growbefore they must be treated as global rather than regional. The capability scheme is alsoanalyzed: although it reduces both the e�ciency and resiliency of name lookup, its impactcan be made as small as desired by limiting the frequency with which security policy isallowed to change.This technical report reproduces the author's Ph.D. thesis.



AcknowledgementsThis thesis is dedicated to my parents, Roland and Ruth Mann. I regret that my fatherdid not live to see its completion.I would like to thank my advisor, David Cheriton, for believing in my ability to �nishthis thesis, urging me to keep at it, and providing many valuable suggestions and technicalcontributions. Mark Linton was most encouraging, especially during the months of self-doubt preceding my orals. Je� Ullman applied his high standards to the proofs in Chapters4 and 5, prompting me to make them much more solid.I am grateful to the Distributed Systems Group at Stanford for their patience in servingas a user community for the V system naming implementation. Several group memberscontributed further by commenting on my ideas or helping to implement object managersthat participate in the naming facility. Lance Berc, Peter Brundrett, Ross Finlayson, KeithLantz, Joe Pallas, Michael Stumm, and Marvin Theimer were of particular assistance.Kenneth Brooks, Bruce Hitson, Rob Nagler, Bill Nowicki, and Paul Roy helped implementan earlier design [10].My o�cemate Anil Gangolli deserves thanks for helping me review Poisson distributionsas well as some other math I had forgotten. Joe Pallas acted as my TEX consultant, andMarvin Theimer passed on some additional TEX trickery from Howard Trickey. MarkBaushke and Cary Gray read drafts of Chapter 1 and made helpful comments.Finally, I would like to thank my roommate Paul Veers for his �rm Christian friendshipand his inspiring example of hard work and strong faith.This work was supported by the IBM Corporation under a Graduate Fellowship andby DARPA under contracts MDA903-80-C-0102 and N00039-83-K-0431.

ii



Contents1 Introduction 11.1 The Problem : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11.2 Decentralized Naming : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21.3 Research Contributions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 101.4 What is Not Included : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 111.5 Thesis Plan : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 112 Related Work 122.1 Remote File Access : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 132.2 Distributed File Service : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 142.3 Distributed Name Servers : : : : : : : : : : : : : : : : : : : : : : : : : : : : 152.4 Other Related Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 162.5 Chapter Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 173 E�ciency 183.1 Cost Per Operation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 193.2 Cache Performance Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : 253.3 Measurements : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 293.4 Limits to Growth : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 333.5 Extension to Global Systems : : : : : : : : : : : : : : : : : : : : : : : : : : 363.6 Chapter Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 374 Fault Tolerance 384.1 System Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 394.2 Name Mapping : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 414.3 Binding Check : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 444.4 Directory Listing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 474.5 Name Binding : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 484.6 Replicating Global Directories : : : : : : : : : : : : : : : : : : : : : : : : : : 504.7 Chapter Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 515 Security 535.1 Mandatory and Discretionary Security : : : : : : : : : : : : : : : : : : : : : 535.2 Counterfeit Security Model : : : : : : : : : : : : : : : : : : : : : : : : : : : 555.3 Capabilities : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 585.4 The Cost of Capabilities : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 61i



5.5 Can We Do Better? : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 645.6 Other Security Considerations : : : : : : : : : : : : : : : : : : : : : : : : : : 665.7 Chapter Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 686 Concluding Remarks 696.1 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 696.2 Future Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 72

ii



List of Tables3.1 Overall Statistics. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 293.2 Statistics for Peak Half Hour. : : : : : : : : : : : : : : : : : : : : : : : : : : 303.3 CPU Cost Measurements. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 313.4 Elapsed Time For Name Mapping. : : : : : : : : : : : : : : : : : : : : : : : 324.1 Directory Types Along a Sample Pathname : : : : : : : : : : : : : : : : : : 515.1 Capability Field Lengths : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 63

iii



iv



Chapter 1Introduction1.1 The ProblemDesigning a global character-string naming facility is an important and di�cult problemin distributed systems.The problem is important because, without global names|names that have the samemeaning on any participating machine|a collection of computers can scarcely be viewedas a single, coherent system. Chaos and confusion are the rule when hosts do not share acommon naming facility for globally available objects: users �nd that objects they calledby one name when using one host are unavailable or called by another name when theymove to another host; distributed or migrating programs �nd that the names they havebeen referencing on one host are invalid or have di�erent meanings on the next.The problem is di�cult because of the characteristics of a large distributed system.Such a system can include a large and growing set of heterogeneous objects and hosts,with individual hosts and parts of the network subject to independent and intermittentfailure. Parts of the system may be owned and controlled by many di�erent autonomousand mutually-suspicious groups|di�erent individuals, di�erent departments within a uni-versity or corporation, di�erent corporations, or even di�erent countries. And of course,even with today's high-speed networks, communication between hosts is relatively costlycompared to local computation.These characteristics impose several challenging requirements on a naming facility. Itmust gracefully accommodate growth in the number and types of objects (and hosts)supported. It must be fault-tolerant|failures at one point in the system must have littleor no e�ect elsewhere. Ideally, in fact, no matter how many failures occur, any set of hoststhat remain up and interconnected should be able to continue interoperating as usual.It must support secure operation|in particular, it must solve the counterfeit problem:ensuring that when a client program sends out an operation request specifying a targetobject by name, it is not fooled by false (counterfeit) responses from servers unauthorizedto bind that name. Yet the naming facility must be e�cient, minimizing communicationcost and avoiding bottlenecks, particularly when clients reference nearby or frequently-usedobjects.Several designs for large-scale distributed naming facilities have been published [3,27,32],but these e�orts have generally focused on the naming of relatively \large" objects, suchas hosts or mailboxes. Naming to the level of individual �les has not been included, ap-parently because these approaches do not o�er high enough performance to be used everytime a �le is opened. Also, the level of availability they provide (through replication) isnot needed when referring to individual, unreplicated �les: when the contents of a �le areunavailable, there is little utility in continuing to be able to look up its name.A closer look at the naming problem suggests that no single implementation strat-1



2 CHAPTER 1. INTRODUCTIONegy will be appropriate for every directory in a large hierarchical name space, becausedirectories near the root of the tree can be expected to have substantially di�erent usagecharacteristics from those near the leaves. Extrapolating from the behavior seen in smallerhierarchical naming systems, such as the UNIX [34] �le system and the DARPA InternetDomain Naming service [30], I expect the directories in a large-scale system to fall intoseveral broad usage classes, with the following characteristics.Directories near the root are of global interest; that is, the entries they contain areaccessed by nearly all client hosts. They must therefore be very highly available|atleast for name lookup. These directories are also modi�ed on occasion, but not nearlyas frequently as they are read. When changes are made, it may be acceptable for themto propagate slowly through the system rather than appearing atomic, if this techniqueincreases availability. Finally, a global directory is likely to contain entries for objects thatare under multiple di�erent administrations, so the authority to make changes must becarefully regulated.Directories in the middle range of the tree are of regional interest; that is, each isaccessed mostly by a group of client hosts that are geographically or administratively closeto it|perhaps belonging to the same corporation or division. High availability remainsimportant, but it is acceptable for the directory to become unavailable if the region itserves fails entirely. The rate of change is moderate. Entries in a regional directory referto objects stored on multiple hosts, but generally all under the same administration.Directories near the leaves of the tree are primarily of local interest; that is, each isaccessed mostly by a small group of closely-associated client hosts|perhaps belonging tothe same department or work group. Each directory at this level holds a set of relatedobjects|for instance, the set of �les containing the source code for a single large program|typically all stored on the same host. These directories are frequently accessed, and alsochange rapidly. In aggregate, most of the information stored by a large naming facilityresides in the local directories.Given this view of the problem, it is logical to look for solutions that use di�erentimplementation techniques at di�erent levels of the naming hierarchy. One such solution,called decentralized naming, is introduced and evaluated in this thesis. It is shown tohave attractive fault tolerance, e�ciency, and security properties, and its practicality isdemonstrated by a substantial prototype implementation for the V distributed operatingsystem [7].1.2 Decentralized NamingIn preparation for Section 1.3's summary of research contributions, this section gives anoverview of decentralized naming and de�nes some necessary terminology.Decentralized naming uses three directory implementation techniques|global, regional,and local|corresponding roughly to the three usage classes described above. Global di-rectories are stored by specialized directory servers; for fault tolerance, they are fullyreplicated. Regional directories are partially replicated, with entries distributed across theobject managers that implement objects named relative to them. Each local directory isstored exclusively by one object manager.This naming technique is called decentralized because each object manager handles thenaming for its own objects. In fact, each object manager knows the full absolute pathnamefor every object it implements; it is a participant in the implementation of each directoryalong the path. (A participant in a directory is a server that holds an authoritative recordof one or more entries in that directory.) For example, in Figure 1.1 below, �le server 1implements a local directory named [edu/stanford/dsg/bin, so it is also a participantin the directories [, [edu, [edu/stanford, and [edu/stanford/dsg, holding the entry



1.2. DECENTRALIZED NAMING 3for edu in the directory [, the entry for stanford in the directory [edu, and so forth.1An object manager ordinarily records only those directory entries required to de�ne theabsolute names of the objects it manages. For example, in [edu/stanford/dsg/user,�le server 3 records only the names jones and mann, not smith. Directory servers alsoparticipate in some directories; a directory server holds a complete list of entries for eachdirectory it participates in.

jones

mann

user

bin

lib smith

File Server 1
File Server 2

File Server 3

dsg

stanford

gov

berkeley

edu

[

host

time

c

b

a

Global

Regional

fats-domino

bo-diddley

com

Local

ray-charles

jackie-wilsonFigure 1.1: A Small ExampleLocal, regional, and global directories are distinguished by the number and type ofservers that participate and the roles that the various participants play in name mapping(lookup). Each is detailed below.Local DirectoriesA local directory has exactly one participant. One object manager stores all entries inthe directory, handles all name mapping in the directory, and manages all the objectsnamed relative to it. The manager knows that it is the only participant, so it covers allpathnames that pass through the directory.2 For example, in Figure 1.1, every object1In these examples, pathname components are delimited by \/" characters, and absolute names areagged by a leading \[" character. This convention is used in the V naming implementation.2An entity is said to cover a name if it authoritatively knows either what the name is bound to, or thatthe name is not bound.



4 CHAPTER 1. INTRODUCTIONwhose name begins with the pre�x [edu/stanford/dsg/user/smith is a �le or directorywhose contents and name binding are stored by �le server 2. Every descendant of a localdirectory is local as well and has the same manager; for example, [edu/stanford/dsg/user/smith/source/emacs would also be a local directory stored by the same manageras [edu/stanford/dsg/user/smith.Regional DirectoriesA regional directory has multiple participants. Each participating object manager storesa subset of the entries in the directory|speci�cally, each manager holds the entries forexactly those child directories in which it participates. For example, as shown in Figure 1.2,�le server 2 holds the entry for smith in the user directory, while �le server 3 holds theentries for jones and mann. The entry for a regional child directory is thus replicatedat each participant in the child, while that of a local child is stored only by the child'smanager. In the dsg directory, for instance, �le server 1 binds bin and �le server 2 bindslib, while both �le servers 2 and 3 bind user. Every descendant of a regional directory iseither regional or local.
user

mann

[[

File Server 1 File Server 2 File Server 3

jonesbin

[

user

smithlib

edu

stanford

dsg

stanford

edu

dsg

stanford

edu

dsg

Figure 1.2: Information Held by Each ManagerName mapping in a regional directory is performed by sending a request to everyparticipant in the directory; only those participants that cover the given name respond.To make such operations more e�cient, the participants in each regional directory forma participant group to which multicasts can be directed; name mapping requests are thenmulticast to the group and processed in parallel by its members. The underlying network isassumed to provide multicast with the following semantics: Any set of hosts (or processes)can form a group with a single address. Neither the clients that send to the group nor themembers themselves are required to possess a complete list of members; they need onlyknow the group address. When a message is sent to the group, delivery to each memberis assumed to succeed or fail independently of delivery to the others, and failures are not



1.2. DECENTRALIZED NAMING 5necessarily reported to the sender.3One or more participants in a regional directory may hold a name list for the directory|a complete list of single-component names for which directory entries exist. A name listdoes not include the directory entries themselves, only the names|that is, it does notrecord what the listed names are bound to, only that each is bound to something. (Forexample, the name list for [edu/stanford/time in Figure 1.1 would simply be (a, b,c). It would not indicate that the named objects are time servers, give their networkaddresses, or the like.) Name lists are used primarily to prevent duplicates from arisingwhen new names are de�ned in a directory; a new name must be added to the list beforeit can be bound. They have other uses as well|if a client attempts to map an unboundname in a regional directory, a name list holder that receives the request can generate anerror response because it covers all the unbound names: it knows that any name not onits list is unbound. There are three useful approaches to storing the name list|o� line, atmanagers, or at directory servers.O�-line name lists are used in directories where new names are only de�ned manuallyby a system administrator. For example, new host names are only chosen when newmachines are acquired, so at an institution with only a few hosts (called, say, Marquette),the directory [edu/marquette/host could be made regional, with the name list simplywritten on a piece of paper and kept in a system administrator's desk drawer. Thisapproach is simple and symmetrical, but has the drawback that no on-line participantcovers the directory's unbound names. In the example, a client that references an unboundMarquette host name receives no reply|its name mapping request times out, leaving theclient uncertain whether the name is unbound or is bound to a host that has crashed.At the opposite extreme, all (or most) managers participating in a regional directorymay keep a complete name list. In Figure 1.1, for example, both �le server 2 and �le server3 might well keep a complete name list for [edu/stanford/dsg/user in stable storage.Either one is then prepared to give an error response when a client attempts to map anunbound name in the directory; however, cooperation is required to keep both replicas upto date when either �le server adds or deletes a directory entry.An intermediate approach is to include one or more directory servers as participants inthe directory and give them the responsibility of maintaining the name list. If more thanone server is included, they coordinate with each other as necessary to keep the copiesidentical, as with replicated global directories. This approach keeps the object managerssimple, yet retains the bene�ts of having the name list available on line. It does, however,put an additional burden on the directory servers. In the �gure, the [edu/stanford/hostdirectory would become a candidate for this implementation strategy if many additionalhosts were added.Global DirectoriesA global directory has many participants, some object managers and some directory servers.Each participating directory server holds a complete copy of the directory|all entries,with the binding for each name given. Most operations on the directory (including namemapping) are handled by the directory servers, so the participating object managers neednot form a multicast group. The object managers do, however, continue to store entriesfor the subdirectories in which they participate.Most global directories are replicated on several directory servers to improve the faulttolerance and e�ciency of read operations (such as name mapping). In an internetwork,the root directory would typically be replicated at least once on every subnetwork, and3Group communication of this sort is available in the V system using process groups [11], at the Ethernetdata link level using multicast addressing [18], and experimentally in the DARPA Internet using host groups[9,13,14].



6 CHAPTER 1. INTRODUCTIONlower-level global directories would be replicated on those subnetworks where they areheavily used. Update algorithms such as those developed for use in Grapevine [3] and itsdescendants are well suited for use in global directories. Updates are infrequent in thehighest-level directories of a large hierarchical name space, and so the slow update propa-gation rate and \eventual consistency" property of these algorithms should be acceptable.Whether a particular directory is implemented as global or regional is a matter ofadministrative choice. Name mapping in a regional directory is more fault-tolerant, butit is more e�cient in a global directory, and the e�ciency advantage increases as thedirectory grows to include more participants. This issue is discussed further in Chapter 3,which derives a practical limit on the size of regional directories, based on performanceconsiderations.1.2.1 Name MappingName mapping is an extension of name lookup. It accepts a name and a message asits arguments, looks up the name's binding, and delivers the name and message to themanager of the bound object, if any. It returns either a response from the object manageror (if the name was unbound or the manager could not be contacted) a failure indication.This de�nition of name mapping reects the view that the usual reason for looking upa name is as a preliminary step in performing an operation on the named object. Forexample, if a client program wants to open a �le foo, it calls the OpenFile routine withthe target �le speci�ed by name. In a decentralized naming system, the OpenFile requestis \piggybacked" on the name mapping request for foo by including it in the message thatis delivered to foo's manager. This technique saves network tra�c by allowing both thename lookup and object operation to be requested in a single packet.With the directories stored as described above, name mapping can be performed usinga simple (but ine�cient) protocol involving the directory servers and multicast.4 The clientbegins by submitting its operation request to a directory server for the root directory, whichlooks up the �rst name component. If the name maps to another global directory, theserver forwards the request to a server for that directory (perhaps itself), and this processis repeated until a regional or local directory is reached. If a regional directory is reached,the last directory server forwards the request as a multicast to the participant group for thedirectory. Each participant then examines the remaining name su�x to determine whetherit covers the name; those that do not cover the name ignore the request. A participantthat does cover the name is either the manager of the named object or knows that thename is unbound. In the former case, it performs the requested operation and returns theresults; in the latter case it returns a not found error indication. If a local directory isreached, the directory server forwards the request on to the directory's manager, which ofcourse covers the name, and it handles the request.An example of the basic name mapping technique is shown in Figure 1.3. A clientprogram needs to open a �le named [edu/stanford/dsg/user/mann/phonebook. It �rstsubmits its request to a directory server for the root directory \[", which looks up edu inits copy of the directory. The request next passes through directory servers for edu andstanford. Determining that the name dsg is bound to a regional directory, the server forstanford passes the request on to the directory's participants|�le servers 1, 2, and 3|bymulticasting it to the participant group. File server 1 does not hold a binding for thename's fourth component, user, so it ignores the request, assuming another participant in[edu/stanford/dsg will take care of it. File server 2 holds a binding for user, but doesnot hold a binding for mann in the regional directory [edu/stanford/dsg/user, so it tooignores the request. File server 3 does know the binding status of the given name, becauseit implements [edu/stanford/dsg/user/mann as a local directory. It therefore completes4The next section explains how caching is used to improve e�ciency.



1.2. DECENTRALIZED NAMING 7
Directory

server

for "["

Client
Sends request:

Open("[edu/stanford/dsg/user/mann/phonebook")

"[edu/stanford/dsg"

Forwards request to

for 

participant group

Directory

"edu"

Directory

server for

server for

"stanford"

File
Server 1

File
Server 2

File
Server 3

Ignores request;

binding unknown.

Ignores request;

binding unknown.

Maps name,
opens file,
and replies.Figure 1.3: Name Mapping Using Directory Servers and Multicastthe name mapping to �nd the requested �le, opens it, and returns a handle on the open�le to the original client, as shown.There are three possible outcomes to this name mapping procedure: it either succeeds,fails with an error reply, or fails with no reply.Name mapping succeeds, as in the example above, when the given name is bound andthe client is able to communicate with the bound object's manager.Name mapping fails with an error reply when the given name is not bound, but is cov-ered by some object manager with which the client is able to communicate. For instance, ifthe client in the previous example had invoked the OpenFile operation with the misspelledname [edu/stanford/dsg/user/mann/phnoebook, �le server 3 would have recognized thename as unbound and returned an error indication.Name mapping fails with no reply when the client is not able to communicate withany entity that covers the given name|either a hardware fault has made it inaccessible,or there is no such entity. Generally, several retransmissions and a time delay are requiredbefore the client concludes that no reply is likely to be forthcoming. In the example, if �leserver 3 crashes or is partitioned away from the rest of the network, a client presenting thename [edu/stanford/dsg/user/mann/phonebook would receive no reply. To illustratethe second possibility, suppose that the name list for [edu/stanford/dsg/user is notkept on line, and a client presents the name [edu/stanford/dsg/user/amnn/phonebook.In this case, all three �le managers ignore the request and again, the client receives noreply. This example shows why (as remarked above) it is useful to keep the name list of aregional directory on line: it would be preferable for the client to receive a prompt replystating that the name is de�nitely not bound, instead of waiting through a timeout periodand then remaining uncertain as to the reason for the failure.The basic technique just described is rather ine�cient, but it is not the last word in de-centralized name mapping; the next subsection describes a more e�cient and sophisticatedtechnique that takes advantage of naming information cached by clients.1.2.2 Name CachingEach client of the naming facility keeps a pre�x cache in its local memory. The cacherecords bindings between name pre�xes (that is, directory names) and directory managersor groups. These caches are used to reduce the average cost of performing naming opera-



8 CHAPTER 1. INTRODUCTIONtions; they do so by reducing the number of multicasts and the number of requests sent todirectory servers. Whenever a client is attempting to map the name n, it begins by lookingin its cache to �nd the longest matching pre�x of n.5 If such a pre�x match is found, theclient sends the request to the manager or group indicated by the cache. If no match isfound, the client falls back on the basic name mapping procedure, sending the request to adirectory server for the root. A cache lookup is considered a hit if the pre�x match reachesa local directory, a near miss if it reaches a regional or global directory below the root, ora miss if there is no pre�x match.Cache entries are normally created on demand. Whenever a cache miss or near missrequires the client to use multicast or go through a directory server, the server that respondsalso provides information for the client's cache. For instance, suppose the client in ourrunning example attempts to map the name [edu/stanford/dsg/user/jones/mbox, but�nds only the pre�x [edu/stanford in its cache. It will receive a response from �le server3 indicating that it manages [edu/stanford/dsg/user/jones as a local directory.Entries can also be preloaded into a cache to reduce the impact of startup misses. Forexample, in the V implementation, all bindings in the root directory are preloaded intoeach client's cache.Cache consistency is maintained by detecting and discarding stale cache entries on use.A cache entry becomes stale when the name pre�x it contains is no longer covered by themanager or group it indicates. When a stale cache entry is used, the result is that thename request is sent to the wrong manager (or group). If the manager no longer exists,the request fails with no reply. If the manager exists but no longer covers the given name,it reports that fact back to the client. In either case, the client recognizes that its cacheentry is (or may be) stale, and retries its request without using that entry. In no case canthe name be mapped to the wrong object.1.2.3 Nearby GroupsOne important question remains to be answered: when a client's cache misses entirely,how does it �nd a root directory server to fall back on? Nearby groups provide a solutionto this problem and also improve the fault tolerance of name mapping.The nearby group mechanism works as follows. Conceptually, for each host H's there isa multicast group bH consisting of all object managers and directory servers that are nearto H|say, within one or two hops through the network|called the nearby group for H.Normally, a client's cache includes an entry mapping from the root directory name (\[")to the nearest root directory server, which matches any name that is not matched by anyother cache entry. If the root entry is missing or proves stale, however, H multicasts itsnext name mapping request to bH . If one of the nearby managers binds the given name,it will respond to the request; if a nearby root directory server is up and accessible, it willrespond with a new root cache entry pointing to itself. This technique makes access tonearby objects independent of failures in the global directory system.6This mechanism can be implemented without actually creating a large number of dif-ferent groups. Instead, all servers for the root directory, together with all participants inevery top-level regional directory, join a single global group. When a client needs to send toits nearby group, it multicasts its request to the nearby members of the global group|say,to all members that can be reached in one or two hops through the internetwork. (Scopedmulticast of this sort is available in the IP host group facility [9].)5A pathname n1 is considered a pre�x of n2 if the components of n1 respectively match the initialcomponents of n2; so [a is a pre�x of [a/b, but not of [ab.6One can also make access to distant objects resilient against the failure of nearby directory servers byintroducing more retries to larger groups.



1.2. DECENTRALIZED NAMING 91.2.4 Generic and Group NamingIn a distributed system, objects that are logically one unit are frequently either replicated orsplit into fragments, with each copy or fragment maintained by a di�erent object manageron a di�erent host. If clients are to see a replicated or fragmented object as a single entity,it is important that the naming system be able to bind all its parts (or subobjects) to asingle name. Mapping this name should return all subobjects if they are fragments of themain object; it is su�cient to return any one subobject if they are copies. Names bound inthese ways are called group and generic names, respectively, as opposed to speci�c names,which are bound to exactly one object.A decentralized naming facility implements generic names by relaxing the restrictionthat only one participant in a regional (or global) directory can bind a given name to anobject it manages. Then when a client's name mapping request is sent to the directory'shost group, several participants can respond. The client software selects one response andcaches the identity of the responder. From then on it sends requests only to the subobjectit �rst selected, until that manager no longer binds the name or is no longer accessible.Such events are treated as cache misses, and cause the client to fall back on multicast namemapping to select a new referent for the name.Generic naming has proven particularly useful in the V system. For example, theDistributed Systems Group at Stanford keeps a complete tree of standard system �les(such as executable binaries for common commands) on each of several �le servers inthe Computer Science building. Client programs reference these �les using a well-knowngeneric name, so that if one �le server crashes, the others transparently take over its load.Note that the naming system treats each tree root as an entirely separate local directory; itis not responsible for keeping the tree copies identical. Thus the problem of �le replicationhas been factored out of the naming system and treated separately.Because a group-named object is fragmented among multiple managers, not replicated,name mapping requests on it should be transmitted to all its managers. Therefore, a group-named object has a multicast group associated with it, whose members are the managers ofits subobjects. A client whose cache misses on the group name is given the group addressto put into its cache; it then multicasts subsequent name mapping requests to the group.(The naming system does not take responsibility for ensuring that such multicasts reliablyreach all subobject managers; in cases where reliable multicast is required, the participatingmanagers must implement it themselves.) Regional directories can be viewed as group-named objects|they are fragmented across multiple participants, with some entries heldby each.1.2.5 Other Naming OperationsBesides name mapping, decentralized naming provides three other \read" operations onname bindings|directory listing, binding check, and inverse name mapping; and two\write" operations|name binding and name unbinding.The directory listing operation returns a list of all bound names in a speci�ed directory,optionally including a type-dependent descriptor for each bound object. The di�cult casehere is listing a regional directory with no on-line name list holders. The V implementationuses an unreliable, \best-e�orts" protocol to provide such listings: the client repeatedlymulticasts a request to the participant group for the directory, each time appending alist of participants that have already responded and therefore should not respond again,until the request has been transmitted several consecutive times with no response. It thencollates all the received replies to produce a listing.The binding check operation accepts a name and reports whether it is bound. It di�ersfrom name mapping in that its de�nition does not require it to send a message to the



10 CHAPTER 1. INTRODUCTIONmanager of the bound object (if any).Inverse name mapping operations accept a manager-speci�c low-level identi�er for anobject and return the object's absolute name. The pwd command of UNIX, for example,performs an inverse name mapping on the user's working directory. With decentralizednaming, such operations are particularly cheap and easy to implement because (as men-tioned above) each object's absolute name is known locally by its manager.A name binding operation creates a new binding between a given name and a givenobject. If the speci�ed object's manager already covers the given name, binding is straight-forward and no more costly than name mapping. Acquiring coverage of new names is moreproblematical; it requires reliable communication with the server that previously coveredthe name.Name unbinding deletes the binding between a given name and object. If the speci�edname is still to be covered by the same object manager, unbinding is straightforward.Giving up coverage requires some additional care.This completes our overview of decentralized naming. Further details are introducedas needed in subsequent chapters.1.3 Research ContributionsThis thesis investigates the properties of decentralized naming. It presents results in theareas of e�ciency, fault tolerance, and security.One group of results characterizes the e�ciency of decentralized naming. First, theaverage cost of performing each of the �ve major naming operations is derived in termsof basic system parameters, including the cache hit ratio, and is compared with the the-oretical optimum. Next, an analytical model of cache performance is presented, and it isvalidated by comparing its predictions with measurements taken on the V naming imple-mentation. Finally, it is shown that the maximum practical number of object managersthat can participate in a regional directory is limited by the fact that both the cost ofmapping a name and the average name mapping load per participant contain terms thatare proportional to the number of participants, and an estimate of this maximum for realsystems is derived.A second group of results characterizes the fault tolerance of decentralized naming.Name mapping for nearby objects is shown to have the optimum possible fault tolerance;whenever an object is accessible at all, it is accessible by name. All faults are tolerated ex-cept failure of the named object's manager or network failures that prevent communicationwith it|either of which would prevent operations on the named object from succeeding,even if its name could still be mapped. Optimum fault tolerance is achieved, however,only because name mapping is de�ned to require communication with the named object'smanager, and is not required to distinguish failures caused by unbound names from thosecaused by inaccessible object managers. Decentralized binding check, which is not de�nedin this way, is shown to have weaker fault tolerance properties. It is also shown thatname binding in a distributed system cannot be made resilient against as large a set offaults as can name mapping, regardless of whether decentralized naming or some othertechnique is used. A special case of decentralized name binding can and does achieve thesame resiliency as name mapping, however.A third group of results lies in the area of security. The use of decentralized namingdoes not complicate the problem of providing mandatory security in a distributed system,but a solution to the counterfeit problem of discretionary security (mentioned above) isrequired. This thesis presents such a solution, based on capabilities, evaluates the solution'simpact on the e�ciency and resiliency of naming, and argues that no better solutions areavailable. It is shown that, in general terms, one can approximate the e�ciency andresiliency of unsecure decentralized naming more and more closely as the detailed security



1.4. WHAT IS NOT INCLUDED 11policy is allowed to change less and less frequently.Finally, this thesis demonstrates the practicality of decentralized naming, by describinga substantial prototype implementation that is in daily use in the V distributed operatingsystem.1.4 What is Not IncludedThis thesis concentrates on the implementation of regional (and local) directories becauseit is the most interesting and novel part of the decentralized approach. A detailed discus-sion of mechanisms for implementing replicated global directories is omitted because therequired technology has already been rather well explored by other workers [3,40,27,32,42].Also, the prototype V implementation does not include any global directories: even theroot directory is implemented as a regional directory (with some optimizations). In apositive sense, the success of this implementation indicates that a system con�ned to asingle local or campus-wide net is small enough that global directories and their complexreplication mechanisms are not needed.The discussion of security in Chapter 5 concentrates on the counterfeit problem, becauseit is the most interesting security problem that arises in a decentralized naming facility.Most security issues that have been considered by other authors are either not directlyrelated to naming, or can be solved in the same way in a decentralized naming system asin any other.1.5 Thesis PlanThe next chapter surveys related work in naming. Chapter 3 evaluates the performance ofdecentralized naming, discussing the caching mechanism used to achieve high performance,and estimates the limits on the size of a regional directory that are imposed by performanceconsiderations. Chapter 4 evaluates the fault tolerance of decentralized naming. Chapter 5is concerned with the security of decentralized naming, describing and evaluating a solutionto the counterfeit problem. Chapter 6 summarizes the research and suggests directions forfuture work.



Chapter 2Related WorkNaming has been recognized as a fundamental issue in computer systems for many years.Many sorts of objects need names, spanning a wide range in granularity, from individualmemory cells to large networks of computers within an internetwork. Many types ofnames are used, from numeric identi�ers chosen for the convenience of hardware devicesto character strings or even pictures (icons) chosen for the convenience of human users.Common issues recur throughout this large problem space, but a single thesis can treatonly a small part of it; the survey below therefore concentrates on a few naming systemsthat are closely related to the main topic of this thesis, merely hinting at the breadth ofexisting work in naming,One of the most basic components of a von Neumann computer is the addressablememory|which is essentially a naming mechanism: memory addresses serve as low-levelnames for data and instructions within a program. Stored-program computers derive muchof their exibility from this mechanism, because it allows the binding between addressesand values to change from one program run to the next, and even during program ex-ecution. While the earliest and simplest computers maintained a �xed binding betweenaddresses and physical memory cells, later designs incorporated such innovations as baseregisters, paging, and segmentation to support multiprogramming, virtual memory, anddata sharing [20,15,24].Because computers are programmed and used by people, it is also important to pro-vide meaningful, mnemonic names for the objects they manipulate. Symbolic assemblylanguages and higher-level languages allow the programmer to assign such high-level namesto the objects manipulated by his program. (Knuth and Trabb Pardo give an interestingaccount of the early development of these languages [25].) Most programming languagesonly provide names that are local to a single computation, however.The task of providing global names for shared objects (particularly �les) in a single-machine system has traditionally been assigned to the operating system. There is littlepublished research on �le naming in single-machine operating systems; Saltzer [37] gives anexcellent overview of the state of the art in this area. Early systems provided a at spaceof �le names within each storage device, while the next step was to introduce a separatedirectory for each user account. Due to its greater exibility, the hierarchical directorysystem of MULTICS [12] has strongly inuenced more recent system designs, beginningwith UNIX [34].Naming in distributed systems presents a whole new class of problems. As was notedin the introduction, the nature of a large distributed system makes it di�cult to con-struct a naming facility that is at once acceptably fault-tolerant, e�cient, and secure.The remainder of this chapter discusses several existing distributed naming facilities, eachrepresenting an important contemporary style of naming architecture, and contrasts themwith the decentralized approach. 12



2.1. REMOTE FILE ACCESS 132.1 Remote File AccessOne simple type of distributed naming facility results when a single-machine operatingsystem is extended to provide transparent access to remote �les across a network. Somerecent examples of such remote �le access systems include Sun Microsystems' Network FileSystem [39] and the Newcastle Connection [5]; an older example is Cocanet UNIX [36].Each of the cited systems links together a network of UNIX [34] hosts by allowing hoststo \mount" foreign �le systems as subtrees of their own root �le systems. As an example,host Laurel might mount host Hardy's root �le system as /hardy, allowing it to accessHardy's /usr/spool/news directory under the name /hardy/usr/spool/news.Remote �le access systems can be quite useful, but they di�er fundamentally from de-centralized naming in that the naming they provide is not global. That is, because thereis no mechanism for keeping the multiple root �le systems identical, the same object canhave di�erent \absolute" names when viewed from di�erent hosts. This lack of uniformnaming can cause di�culties for distributed application programs, because processes run-ning on di�erent hosts are in di�erent naming domains. For example, an application usingseveral hosts to process a data �le would run into trouble if the �le name were speci�ed as/usr/mann/data; rather than opening the same �le, participating processes on hosts Lau-rel and Hardy would respectively open /laurel/usr/mann/data and /hardy/usr/mann/data. Even if the user were to explicitly specify /hardy/usr/mann/data, the programwould fail if Laurel did not have Hardy's �le system mounted, or worse, had some other�le system mounted under the name /hardy.The e�ciency and fault tolerance of these systems is inherently good, at least wheneach host has a local disk. Name mapping is e�cient because the initial components ofeach name are mapped locally, the remainder by the host storing the �le, and mapping ispiggybacked on the Open operation; thus a remote �le can be opened with a single packetexchange. Name mapping is fault-tolerant in that, once the initial Mount operation haslocated the remote host, client programs can continue to access �les on it as long as it,the local host, and the network remain up; there are no other servers whose failure canprevent things from working. Both the e�ciency and the fault tolerance are reduced whenthe client does not have its own disk, however, because name mapping then requires accessboth to the server that holds the actual �le and to the one that holds the client's root �lesystem. (The client can, of course, regain some e�ciency by caching directory informationfrom its root �le system in local memory.)Remote �le access systems do not scale well, because if every host mounts every other,the number of mount points in the system is proportional to n2. Because of this problem,each host in a large installation typically mounts only those �le systems its users expectto need, so users who move from one host to another see a di�erent set of available �leson each.Also, as installations grow, the Mount operation is performed more and more frequently,so its fault tolerance, e�ciency, and detailed semantics become important issues. How areremote hosts and �le systems named in the arguments provided to a Mount call, and howare those names mapped? Whatever mechanism is used for that purpose is e�ectively apart of the �le naming system as well.In conclusion, although remote �le access systems do not provide a global name space,they are useful in some applications, and they tend to be highly fault-tolerant and e�cient.They have also proven relatively easy to implement, even as extensions to existing UNIXsystems. They are at their best when a cluster of hosts running single-machine operatingsystems need access to a common set of �les, but do not need to run distributed programs.



14 CHAPTER 2. RELATED WORK2.2 Distributed File ServiceLocus [44] represents another class of naming architecture, in which a single �le system isextended across a network to form the backbone of a tightly-integrated distributed system.The Locus naming facility provides a uniform, global name space for objects (primarily�les) stored by multiple servers. Its implementation techniques di�er markedly from thoseof decentralized naming, however, giving it di�erent e�ciency and fault tolerance proper-ties.The Locus naming hierarchy is implemented as a set of nonoverlapping subtrees called�le groups, analogous to �le systems in UNIX. Each �le group can be stored at any site,or replicated (fully or partially) at several sites. Both the �les and the directories ina replicated �le group are kept consistent by performing updates as multi-site atomictransactions. As in UNIX, the complete global tree is built up by �rst designating theroot of one �le group as the global root, then repeatedly using the Mount operation toattach new groups at the leaves of the exiting tree. Knowledge of where each �le group ismounted is replicated at every site.The basic name mapping technique used in Locus is quite ine�cient, but acceptable ef-�ciency is achieved by the addition of replication and caching. Mapping a single pathnamecan in principle require traversing several �le groups at di�erent storage sites before thesite of the target �le is reached. In practice, however, the root �le group is replicated atevery site and (presumably, as in ordinary UNIX installations) most mounted �le groupsare placed directly under the root, so that as in the remote access systems of the previoussection, name mapping begins at the local host and proceeds directly to the host holdingthe named object. Thus, Locus name mapping could easily achieve the same e�ciency asdo remote access systems; however, a peculiarity in the implementation sacri�ces much ofthat e�ciency|the site that originates a name request also performs the lookup for everycomponent in the pathname, reading directories over the network when they are not repli-cated locally. Sheltzer's thesis [41] discusses the addition of directory caching to solve thisperformance problem. His technique keeps the caches consistent by requiring a directory'sstorage site to notify each holder of a cached directory page whenever the page changes.As compared with on-use consistency, this technique places an added bookkeeping burdenon the storage site and requires it to send noti�cation messages that are often unnecessary(because the caching site will not use the updated page before the next change); on thepositive side, however, the fact that cached information is always correct allows the holderto use the cache to perform directory listing as a purely local operation, with no need tocontact the directory's storage site.Directory replication is used to improve the fault tolerance of Locus name mapping aswell as its e�ciency. Replication is quite important; without it, failure of the site holdingthe root �le group would bring down the entire system by making all �les inaccessible. Ofcourse, replication tends to reduce the resiliency of directory update operations, becausean update must reach every copy to assure consistency. Locus deals with this problem byallowing directory updates to proceed even if some copies are unreachable|in fact, evenif the system is partitioned, updates can proceed in each partition. An automatic mergeprocedure reconciles the partitions after they are rejoined, detecting any name clashesthat have arisen and notifying the owners of the a�ected �les by electronic mail. A pollingprotocol is used to detect network failures and establish a consensus on the membershipof each partition; it is not clear how well this protocol will perform in large installations.In conclusion, the Locus naming facility has a number of interesting features, but is nota full solution to the problem considered in this thesis. Its e�ciency problems have alreadybeen discussed. Further, due to the replication of the root directories and the mount tableon every host, its ability to scale up to large installations (of hundreds or thousands ofhosts) is questionable.



2.3. DISTRIBUTED NAME SERVERS 152.3 Distributed Name ServersIn recent years, it has become popular to use distributed name servers to name hosts,mailboxes, and other objects of similar granularity within large internetworks. In thisapproach to naming, the global directory tree is distributed across multiple name serversscattered throughout the internetwork, with each directory typically replicated at severalserver sites. Terry's thesis surveys work in this area [42].Perhaps the most advanced example of such a naming service is a design describedby Lampson in a recent paper [27]. Unlike its predecessors Grapevine [3,40], and theClearinghouse [32], this design supports an unlimited-depth naming hierarchy, and it istargeted for even larger installations|potentially incorporating every networked computerin the world into a single name space. It is similar to its predecessors in that each directoryis replicated in full at an administratively selected set of sites, and update is performednon-atomically. Lookup in a directory is de�ned nondeterministically: it may return anyname binding that was established since (or current at) the most recent \sweep" of thedirectory. Sweeps occur periodically for each directory, bringing all copies into an identicalstate. Conicting updates are reconciled by timestamps|the latest update wins.1Lampson's paper concentrates on naming objects of relatively large granularity (suchas hosts or mailboxes), but mentions that \the name service can be used to name a �lesystem." His colleagues have extended the design to provide global �le naming in that way,forming a �le's absolute pathname by concatenating a global �le system name (providedby the name service) with a local �le name (provided by the �le server) [2]. To look up anabsolute �le name, one �rst submits it to the global naming service, which maps a pre�x ofthe name to locate the server storing the �le; the request is then passed on to that serverto complete the name mapping. This technique is similar, but not identical, to the basicname mapping protocol of decentralized naming.One major di�erence between decentralized naming and the extended Lampson designis that the latter does not make any use of multicast: it does not include either regionaldirectories or the nearby-group feature of decentralized naming. In a sense, it is ratherlike an installation of decentralized naming that has been con�gured with no regionaldirectories|all directories with entries on more than one host are managed by the globalname service. For example, suppose a client host H with an empty name cache attemptsto open a �le called [edu/stanford/dsg/fs1/george/calendar that is stored on a �leserver FS1. Under the extended Lampson design, the global name service must implementenough of the name to map to a particular server; for instance, if the entire tree rooted atfs1 is implemented by FS1, the global name service maps the pre�x [edu/stanford/dsg/fs1 to locate that server, then passes the request on to it. Under decentralized naming, onthe other hand, if dsg is the �rst regional directory in the pathname, the global directoryservice maps the pre�x [edu/stanford/dsg to �nd a multicast address for the participantsin dsg, then forwards the request to that address. (Or if the global directory service cannotbe reached and FS1 is nearby to H, H's multicast to nearby servers reaches FS1.) FS1then maps the remainder of the name and responds to the request. The request succeedsas long as FS1 is up and the global directories [, edu, and stanford are available, oreven without the global directories if FS1 is nearby to H. To approach this resiliencyunder the Lampson design would require the dsg directory to be replicated at FS1 (and ateach host named by an entry in the directory|there is nothing special about FS1 in thisexample). Multicast name mapping cannot simply be tacked on as an added feature in theLampson design, because its philosophy is that objects do not necessarily know their ownnames|the name service does not inform an object when its name is changed.The second major di�erence between decentralized naming and Lampson's design is in1The design includes an authentication service as well, which is described in a companion paper [19].



16 CHAPTER 2. RELATED WORKtheir name cache consistency mechanisms.2 In the Lampson design, the cached result ofa name lookup carries an expiration time assigned by the service. The data is guaranteedto be valid until that time, but must be discarded thereafter. Lampson does not addressthe question of how to choose expiration times|clearly, if expiration times are too short,cache entries will not live long enough to give a useful cache hit rate, but if the times aretoo long, they restrict the frequency with which name bindings can be changed. Decen-tralized naming, on the other hand, employs on-use cache consistency checking. Again,this technique cannot simply be tacked on to the Lampson design because objects do notnecessarily know their own names.In conclusion, although the extended Lampson design is similar in some ways to de-centralized naming|both use replicated directories at the uppermost levels of the naminghierarchy and local directories at the lowest|they di�er in important respects. Decen-tralized naming explores the ideas of multicast for fault tolerance and caching with on-useconsistency for e�ciency, not considered in the Lampson design.2.4 Other Related Work2.4.1 Domain NamingThe Domain Name service recently adopted in the DARPA Internet [30,31] is a simplersystem in the same class as Grapevine and the Lampson design. The design is simpli-�ed by assuming that updates are infrequent enough to be handled manually by humanadministrators|the name service interface does not de�ne any way for a client programto request the addition or deletion of a name binding. Placement and update of directoryreplicas are also handled manually (though some implementations may o�er automated as-sistance). A serious drawback of these simpli�cations is that they put a heavy burden onsystem administrators, o�ering many opportunities for human error to disrupt the system.2.4.2 Pre�x TablesWelch and Ousterhout [46] describe an extension of the UNIX �le system to distributedoperation, using pre�x tables to locate �le servers. Pre�x tables are quite similar to thepre�x caches discussed in this thesis and provide similar e�ciency bene�ts. As imple-mented, however, they are less exible: each pre�x table is statically loaded with a setof pre�xes at boot time. The referent for a pre�x can change during operation, but newpre�xes cannot be added to the table, nor can old ones be deleted. The authors describethe design of a mechanism for adding new pre�xes dynamically, but do not describe anyway of detecting when old pre�xes should be removed entirely. Their scheme also appearsto be vulnerable to the consistency problem discussed in Section 4.2.5 of this thesis.The directory implementation underlying Welch and Ousterhout's pre�x table mech-anism is entirely di�erent from that employed in decentralized naming. There are noregional or global directories; instead, every directory is managed by exactly one server.File servers near the root of the tree delegate authority for some of their subdirectoriesusing remote links, yielding a structure similar to that of Locus. One di�erence fromthe Locus approach is that a remote link does not indicate which server implements thesubdirectory in question; instead, the client must broadcast to �nd it.2As with decentralized naming, caching is important in the Lampson design, because its basic namelookup procedure is often costly|looking up a single pathname can entail contacting several name servers,some distant from the client. Because of this cost, Lampson rates caching as \very desirable," even whenhis name service is not applied to �le naming|and he states that a �le directory system is required to be\much faster" than a service that names only hosts, mailboxes, and the like [27], making caching even moreimportant when the system is extended to name �les.



2.5. CHAPTER SUMMARY 172.4.3 Early V System WorkDecentralized naming is an extension of a design described in an earlier conference pa-per [10]. The earlier design also distributed the responsibility for object naming amongthe system's object managers and used a similar name mapping protocol, but it did notprovide a uniform global name space. Instead, each workstation was provided with a small,independent name server to store local aliases and the top level of the naming hierarchy. Aset of conventions outside the naming system proper ensured that most workstations hadsimilar views of the name space. Decentralized naming replaces these with the multicastname mapping mechanism and per-client name caches described in this thesis.2.5 Chapter SummaryThe ultimate global name service has not yet been constructed|existing systems leaveroom for improvement in both fault tolerance and e�ciency. Decentralized naming attacksthese problems using a new combination of techniques, including multicast name mappingand pre�x caching with on-use consistency.



Chapter 3E�ciencyIt is important for a distributed naming facility to be e�cient, because name mappingoperations are performed frequently|every time a �le is opened, for example. Small �les(1 kilobyte or less) are prevalent in modern program development environments [29,21],and name mapping can easily make up a substantial fraction of the total cost of openingand reading such �les.Decentralized naming relies heavily on pre�x caching for e�ciency; without caching,its name mapping protocol would not be e�cient enough for use in large systems. Theine�ciency arises because each multicast to a regional directory's participant group imposesa load on every participant. With a high enough cache hit ratio, however, multicast isavoided on most requests, dramatically improving the average e�ciency. The hit ratioalso plays a large role in determining where the boundary between global and regionaldirectories should go; as it increases, multicasts become less frequent, so larger directoriescan be handled satisfactorily with regional techniques. This chapter therefore focuses onevaluating the e�ectiveness of caching.The primary results presented are as follows:� The average cost of name mapping (and several other naming operations) is given interms of the cache hit ratio and other system parameters.� An analytical model of cache performance is presented, and is validated by compar-ison with measurements taken on the V naming implementation. The V measure-ments show a hit ratio of 99.7%, and the model predicts similar hit ratios (99.00{99.98%) in most applications of decentralized naming.� Performance considerations are shown to limit the number of object managers thatcan practically participate in a regional directory to a few thousand.To simplify the exposition, the initial sections of this chapter discuss systems con�guredwith no global directories|systems where even the root directory is implemented usingregional techniques. A later section then extends the results to con�gurations that includeglobal directories.Section 3.1 evaluates the average cost per use for several important naming operations.These costs depend on the name cache hit ratio, which is derived analytically in Section 3.2.Section 3.3 presents and discusses measurements of the actual cache hit ratio and otherparameters of the V naming implementation. The cost functions derived in the �rst threesections include a term that varies linearly with the total number of object managers inthe system; Section 3.4 shows that this property limits the size of a system with a regionaldirectory at its root, and Section 3.5 extends the argument to establish a size limit for theregional directories in a system with a global directory at its root. The chapter closes witha summary. 18



3.1. COST PER OPERATION 193.1 Cost Per OperationThis section evaluates the cost of naming operations in terms of packet events. A packetevent is the transmission or reception of a network packet. Thus, a unicast message coststwo packet events|one at the sender and one at the recipient. A multicast with g recipientscosts a total of g + 1 packet events|one at the sender, and one at each recipient. Packetevents are a good cost metric here because naming operations generally do not take muchprocessing time; their cost is dominated by the cost of communication. This section's costanalysis assumes that no packets are dropped by the network and that responses are notdelayed long enough to trigger retransmissions by the requestor. The root directory isassumed to be regional (and hence no directories are global).3.1.1 Name MappingDetermining the average cost of name mapping is a complex problem because of the largenumber of cases involved. There are many possible levels of \near miss" between theextreme possibilities of a hit that leads to a local directory and a miss that returns no cacheinformation at all. It is not di�cult, however, to develop a conservative cost estimate basedon a simpli�ed model of cache behavior that considers all misses together and charges theworst-case cost for each; such estimates are acceptably accurate when misses are infrequent.This section states and derives such an estimate, then goes on to illustrate how inordinatelycomplex the estimate would become if it were extended to consider all miss cases separately.Equation 3.1 is a conservative estimate for Cmap, the average number of packet eventsrequired to map a name; its derivation is given below.Cmap = 4h+ (r +m+ 3)(1 � h) (3:1)In this equation, h is the cache hit ratio, r is the number of retransmissions required todetermine a host is down, and m is the number of object managers in the system. Bothclient and server packet events are counted. The equation is valid for names that arecovered by exactly one manager (the normal case).The analysis leading to Equation 3.1 is based on a simple \hit or miss" model of cachebehavior. Under this model, a cache lookup is considered to be a hit only if (1) the datait returns is still valid (not stale), and (2) the matched pre�x refers to a local directory.All other outcomes are considered misses, and the worst-case miss cost is charged for each,yielding a simpli�ed, conservative formula for Cmap.When there is a cache hit, name mapping costs four packet events. The client unicastsits operation request message directly to the correct object manager, and the manager'sunicasts the operation result in response. Thus the client sends one packet and receivesone packet, and so does the manager, for a total of four packet events.When there is a cache miss, as many as r +m+ 3 packet events may be needed. Thisworst-case cost is incurred when the cache returns stale data referring to a host that is nolonger up, and after the stale data is discarded, there is no information about the givenname left in the cache. In this case, the client �rst sends o� a request to the address given inthe stale cache entry. The client detects that the addressed host is down by retransmittingits request r times and receiving no response (r packet events). At this point the clientdiscards its stale cache data, and is left (we have assumed) with no cached informationabout the given name|not even a shorter pre�x that narrows down the lookup to a regionaldirectory below the root. Thus, the client next retransmits its request as a multicast toall m object managers participating in the root directory (m+ 1 packet events). Finally,the client receives a single unicast response from the object's manager (2 packet events),containing the operation result and a corrected cache entry. Summing these values, thetotal cost for this case is r +m+ 3.



20 CHAPTER 3. EFFICIENCYCombining the two cases yields Equation 3.1 above.It is clear from Equation 3.1 that Cmap will be close to the optimum value 4 if the missratio 1 � h is small compared to 1=(r +m + 3), as illustrated in Figure 3.1 below.1 Forexample, Cmap will be less than 4.16 for an installation with 50 object managers, r = 4,and h = 99:7%.
400 6002000

6

4

2

0

h = hit ratio

Number of Managers

h=0.9950 h=0.9970

h=0.9990

h=0.9900

h=0.9999

to map

(avg.)

a name

events

Packet

Figure 3.1: Average Cost of Mapping vs. Number of Managers.It is somewhat more costly to map a generic name than a speci�c name. Although thecost is the same when there is a cache hit (4 packet events), when there is a cache misseach manager that binds the name responds to the client's multicast. Thus if g managersbind the name, the worst-case cost becomes r +m+ 2g + 1 instead of r +m+ 3, makingthe average-case cost Cmap�generic = 4h+ (r +m+ 2g + 1)(1 � h).It is still more costly to map a group name (or the name of a regional directory). Inthis case, each manager that binds the name responds regardless of whether the cache hitsor misses. In the case of a cache hit, the client multicasts to precisely the g managersthat bind the name and receives g responses, for a total cost of 3g + 1 packet events. Inthe case of a miss, there are g responses to the �nal multicast, so the worst-case cost isagain r + m + 2g + 1 instead of r + m + 3, making the average-case cost Cmap�group =(3g + 1)h+ (r +m+ 2g + 1)(1� h).Details of the Cache Miss CaseThe remainder of this section sketches in the details that were omitted from the \hit ormiss" model of cache behavior given above. A owchart (Figure 3.2) summarizes thepossible outcomes of a cache lookup and name mapping attempt, and gives the cost ofeach. The cost of attempting to map an uncovered name is also given. These detailsare provided to illustrate how excessively complex it would be to extend Equation 3.1 toconsider all cases individually.The two cases considered in Equation 3.1 correspond to the paths (1, 3, 7) and (1, 3,6, 9, 2, 12) in Figure 3.2. The best-case (cache hit) path traverses blocks 1, 3, and 7, for a1In all cases, Cmap � 4, because the de�nition of name mapping requires at least one unicast messagefrom client to manager carrying the operation request, and one return message acknowledging the requestand carrying the results.



3.1. COST PER OPERATION 21
in cache?
What is

Yes No

No Yes

covered?
Is name No

Yes

Yes

No

3

1

2

6 7

10

12

11

13

4

get response
Multicast to g mgrs,

= g + 3 events

= 4 events

Unicast request
r times, no reply
= r events

9

Multicast to m mgrs,
get response

= m + 3 events

Unicast request,
error response

= 4 events
get response
Unicast req,

Stale?

Stale?

Old mgr
still exist

?

Local Regional

directory directory

name name

= r(m+1) events
r times, no reply
Multicast to m mgrs,

5

covered?
Is name

No entry

Yes
r times, no reply
Multicast to g mgrs,

= r(g + 1) events

8

r times, no reply
Multicast to g mgrs,

= r(g + 1) events

14

Known
not stale

?

15

Yes

No

No

Done

Start

Figure 3.2: Number of Packet Events Required for Name Mapping.total cost of four packet events, as noted above. The worst-case path for a covered nametraverses (1, 3, 6, 9, 2, 12), for a total cost of r +m+ 3, also as noted previously.The �gure also shows several cache-miss cases that are less costly than the worst case.For example, the cost of a miss is less than the worst case when the cache lookup returnsstale data, but the manager referenced in the stale cache entry still exists|path (1, 3,6, 13, 2, 12). In this case, the initial, misdirected request is transmitted only once andreceives an error reply, rather than being retransmitted several times with no reply. Asanother example, when the initial lookup returns no data, rather than stale data, path(1, 2, 12) is followed. In the latter case, there is no initial, misdirected request; the clientmulticasts immediately.Paths beginning with block 4 illustrate the cost savings that are gained through inclu-sion in the cache of pre�xes that map to regional directories. Paths through this blockare taken when the cache lookup returns a regional directory name as the longest pre�xmatch (termed a \near miss"). If the entry is valid, the near miss reduces the cost of namelookup as compared with a total miss, because it allows the client to multicast its requestto g < m managers rather than all m. If the entry is stale, however, path (1, 4, 10, 14,



22 CHAPTER 3. EFFICIENCY2, 12) is taken. This path may appear to be more costly than (1, 3, 6, 9, 2, 12), whichwe have been considering the worst case, but in fact, g should always equal 0 in block 14,making the costs the same. The reason g is expected to be zero is that, when a regionaldirectory with participant group G is deleted, the group is disbanded (i.e., its membershipg is reduced to 0), and the identi�er G is not reused for a new group until it is very unlikelythat any client still has a binding to G in its cache.The �gure also illustrates the cost of attempting to map an uncovered name, which isconsiderably higher than the worst-case cost of mapping a covered name. Possible pathsthrough the owchart include (1, 2, 5), (1, 3, 6, 9, 2, 5), (1, 4, 8, 15), or worst of all, (1, 4,8, 15, 2, 5).Block 15 requires some explanation at this point: it represents an optimization that canbe applied if some regional directory names are statically de�ned, so that their bindingsto participant group identi�ers can never become stale. If the client knows that the cacheentry it used cannot be stale, it can take the yes path out of block 15, thereby avoidingan extra multicast to all managers (block 5), and retaining the cache entry for later userather than discarding it.Evaluating the cost of mapping generic or group names requires some extensions toFigure 3.2. The cost of mapping a generic name is generally the same as that of a speci�cname, except when there is a successful multicast (blocks 11 and 12), in which case severalreplies are sent instead of just one. In the case of regional directory names and groupnames, the path beginning with block 3 is never taken, and again, several replies are sentin blocks 11 and 12.Finally, two small di�erences between the above discussion and the current V namingimplementation should be noted. First, the V implementation di�ers slightly in its handlingof cache misses. Figure 3.2 assumes that whenever the cache returns data that appearsto be stale, the client software retries the name mapping operation as a multicast to allmanagers; i.e., it ignores the cache completely. The V implementation, on the other hand,retries the operation using what remains in the cache after the apparently stale entry isremoved. For example, if the cached pre�xes [storage and [storage/pescadero bothmatch the name [storage/pescadero/user/fred, but the send using the longer pre�xfails, the retry makes use of the pre�x [storage|referring to the �gure, the stale entryis �rst removed, then the retry begins at block 1 rather than 2. If the [storage entry isnot stale at this point, the lookup cost is reduced by this policy, since the entry is takenadvantage of. If both entries are stale, however, the cost is increased, because the retrywill also fail and a second retry will be needed to map the name. We do not yet haveenough data to determine which policy gives better average performance.Another small di�erence is that, under V, cache data and operation results are not bothreturned in a single message. Instead, client software handles a cache miss by multicastinga request for new cache data (a QueryName operation), then transmitting the actual namemapping operation in a separate message, sent to the address that was returned in theQueryName response. Thus two additional unicast messages (4 packet events) are requiredin the cache-miss case, increasing the approximate average cost given in Equation 3.1 toCvmap = 4h+ (r +m+ 7)(1� h) (3:2)This change, of course, has little e�ect on Cmap when h � 1. In Figure 3.2, the e�ect is toadd two more unicast messages to blocks 11 and 12.3.1.2 Name BindingIt is not di�cult to evaluate the average cost of name binding, but there are several cases toconsider. The primary division is between cases in which the client knows which manager



3.1. COST PER OPERATION 23is to bind the given name and those in which it requests that the name be bound bywhatever manager already covers it.Implicit Manager Speci�cationSome operations use implicit (or by-name) manager speci�cation|the manager that al-ready covers the given name is requested to bind it. The client need not know thatmanager's identity when it issues such a request. An example is object creation by name,which accepts a name and object type as its arguments, creates a new object of the spec-i�ed type, and binds the name to it. The name is required to have been unbound andcovered by exactly one server; the new object is managed by that server. For instance, if[edu/stanford/dsg/user/mann is a local directory managed by a �le server at Stanford,the operation CreateFile([edu/stanford/dsg/user/mann/newfile) creates a new �leon that �le server with the given name.With implicit manager speci�cation, the average cost of name binding is the same asthat of name mapping. The client issues an operation request identical in format to a namemapping request, requesting that the given name be bound to an object on the managerthat covers the name. When there is a cache hit, the request is unicast directly to themanager and the response unicast back, at a total cost of 4 packet events. When there isa cache miss, the worst-case cost is r +m+ 3, as was derived in Section 3.1.1 above.2Explicit Manager Speci�cationOther operations use explicit manager speci�cation, where the client knows beforehandwhat manager is to bind the name and sends the name binding request directly to it. Anexample is \mounting" a new �le server's directory tree into the global name space; boththe new name and the identity of the �le server must be given in the operation request.With explicit manager speci�cation, the cost of name binding depends on where thegiven name was covered before the operation. Assuming the client already knows a unicastaddress for the manager that is to bind the name, there are three subcases: (1) the namewas already covered by the selected manager, (2) it was covered by a di�erent manager,or (3) it was not covered.In subcase (1), the cost is 4 packet events. The client unicasts its request to themanager; the manager in turn carries out the binding request and unicasts its reply.In subcase (2), the cost is 4 packet events plus the cost of the protocol to transfercoverage to the new manager. Again, the request and �nal reply are unicast. Coveragetransfer involves name mapping to �nd the current coverage holder, plus an extra packetto complete the three-way handshake (described in Section 4.5.3).In subcase (3), the cost is 4 packet events plus the cost to determine that the nameappears uncovered. Once more, the request and �nal reply are unicast. The cost of at-tempting to obtain coverage of a globally uncovered name is the same as that of attemptingto map it (given above). Note that the operation fails after incurring this cost.The cost of binding g objects to a generic or group name is roughly g times the costof binding a single object to a speci�c name (using explicit manager speci�cation). Thename is bound to each object, one at a time, and the cost of establishing each binding isessentially the same as that of binding a speci�c name. There is a small di�erence in thatif one or more of the managers needs to request permission to cover the new name (case2Note that with implicit manager speci�cation, it is impossible to bind a (previously) uncovered name,and that attempting to do so costs the same as attempting to map an uncovered name.



24 CHAPTER 3. EFFICIENCY(2) above), it may receive replies from each of the several managers that already cover thename, rather than just one.The cost of name unbinding is similar to that of name binding. Its evaluation is left tothe reader.3.1.3 Directory ListingAnother important naming operation is directory listing. Its cost can be shown to dependon the class of directory (local, regional, or global), and whether the listing includes onlythe bound names, or the names plus a descriptor for each bound object. For local (orglobal) directories, with or without attributes, the cost essentially varies linearly with thesize of the directory, just as it does in most approaches to naming. The cost is similarfor regional directories if the name list is available and only the names are to be listed. Ifthe attributes are also to be listed, the cost includes a term proportional to the numberof managers participating, because the client must request the attributes for each name,resulting in contacting every manager that binds at least one name in the directory. Thebest-e�orts protocol used for directory listing in the absence of an on-line name list is evenmore costly. It and the local directory case are examined in more detail below.The cost of listing a local directory is equal to the cost of mapping its name, plusenough additional packet events to return all the directory entries to the client:Csm�list = 4h+ (r +m+ 3)(1 � h) + �s (3:3)Here, s is the size of the directory (number of entries), and � is a constant that dependson how many entries �t into a packet. In the V implementation, directory entries aretransmitted one to a packet, each in response to a separate request packet, and there is anadditional pair of packets exchanged to \close" the directory after the last entry is read,so �s in Equation 3.3 is replaced by 4s+ 4.3The cost of listing a regional directory with no on-line name list depends on the numberof entries and the number of times the entries are replicated. Speci�cally, the cost in thecache-hit case is (r+1)(g+1)+�s0, while the cost in the cache-miss case is m+1+ r(g+1) + �s0. Here s0 is the total number of entry replicas: if two di�erent managers have acopy of the same entry, it is counted twice in s0. If no entries are replicated, s0 = s. Thesecosts arise as follows: a client lists a directory of this type by repeatedly multicasting arequest to the participant group for the directory, each time appending a list of membersthat have already responded and therefore should not respond again, until the request hasbeen transmitted r consecutive times with no response. The initial request is multicast tor managers if the cache hits or m if it misses, resulting in r + 1 or m + 1 packet eventsrespectively. The directory entries are then returned in �s0 packets, along with cacheinformation if the initial request missed in the cache. Finally, the request and membershiplist (which are assumed to �t into a single packet) are retransmitted r times as a multicastto the g group members.As in the local-directory case, the directory listing protocol actually used in V is some-what less e�cient than the idealized version described above; it requires (r+7)(g+1)+4s�6packet events in the cache-hit case, and m+(r+6)(g+1)+ 4s� 5 in the cache-miss case.First, g + 1 events are required to multicast the initial request to all participants in thedirectory (or m + 1 if the cache misses). Each manager then sends a response, resultingin 2g more events. Next, the client retransmits its request r times (g + 1 events per try),and receives no responses. It now requests and receives each directory entry in a separate3One could, of course, reduce the cost of directory listing by caching directory entries in the client. Suchcaching is not considered in this thesis because it introduces additional cache consistency problems, and itbene�ts only the performance of directory listing, not of name mapping.



3.2. CACHE PERFORMANCE MODEL 25packet exchange, for a total of 4s additional events. Finally, an additional unicast packetis sent to each manager to inform it that the client is done reading directory entries fromit, and these packets are acknowledged, resulting in 4g events. Summing these costs yieldsthe total given above.The cost estimates derived in the above sections (3.1.1{3.1.3) say nothing in themselvesabout the practical usefulness of decentralized naming, because every formula includes thecache hit ratio as a parameter. The next sections, therefore, go on to consider what hitratios can be expected in real systems and what they imply about the practicality andscalability of decentralized naming techniques.3.2 Cache Performance ModelThis section develops a statistical model from which the expected cache hit ratio for a givendecentralized naming installation can be computed in terms of other system parameters,and shows that hit ratios of well over 99% can be expected under realistic assumptionsabout those parameters. The parameters in question are (1) the number of name mappingrequests issued per unit time, (2) the average length of time a name cache entry is valid, (3)the average length of time a client cache remains in use before it is discarded, and (4) the\locality of reference" observed in name usage. In the subsections below, we �rst obtain aformula for the steady-state hit ratio, then evaluate the ratio for some typical parametervalues, and �nally discuss startup misses, which can make the observed hit ratio less thanthe steady-state hit ratio.3.2.1 Steady State Hit RatioThe steady-state hit ratio is the hit ratio for client caches that have been in existence longenough to have gathered a (possibly stale) entry for every manager the client referencesat all. Section 3.2.3 below shows that the hit ratio for an initially empty cache rapidlyapproaches the steady-state ratio after a few startup misses.This section derives the following formula for h, the systemwide average steady-statecache hit ratio: h = 1�Xj Xk ��j;k + vk (3:4)The generation of name mapping requests is assumed to be a Poisson process, and theaverage interarrival time for requests generated by client j that reference a name in localsubtree k is denoted as �j;k.4 The symbol vk represents the expected validity time fora cache entry that identi�es which manager implements names in subtree k; that is, theaverage interval from the time such a cache entry is acquired to the time it becomes invalid.The summation is taken over all clients and all subtrees that exist at the moment for whichthe hit ratio is being evaluated.5 Finally, � represents the global average interarrival timefor name mapping requests; it is equal to �PjPk ��1j;k ��1. Equation 3.4 is derived as follows.First, observe that the steady-state hit ratio for a single pair (j; k) is given byhj;k = 1� �j;k�j;k + vk (3:5)4A local subtree is a complete subtree of the global naming hierarchy, whose root is a local directory thathas a regional (or global) directory as its parent.5Thus, of course, the hit ratio can vary with time.



26 CHAPTER 3. EFFICIENCY
v

β

Time

request

request

request

request

request

cache miss

cache miss

Cache entry created

Cache entry becomes stale

Cache entry refreshedFigure 3.3: Average Intermiss Time Equals v + �.because the average time between misses is �j;k+vk, as illustrated in Figure 3.3. Whenevera miss occurs, the client acquires a new cache entry that will be valid for a time v0. Thenext miss will occur on the �rst request that arrives after the entry becomes invalid|thatis, at time v0 + � 0 for some � 0 � 0. Now, we know that the average value of v0 is vk, andbecause we have assumed that the generation of requests is a Poisson process, we alsoknow that the average time from the end of v0 to the next request (i.e., the expected valueof �0) is equal to the Poisson parameter �j;k. Therefore, the average time between missesis �j;k+ vk. The miss ratio can now be computed as the average number of misses per unittime divided by the average number of requests per unit time, and the hit ratio as 1 minusthe miss ratio, yielding Equation 3.5 above.Equation 3.4 is then derived by taking the average steady-state hit ratio across allclient/subtree pairs, weighted by the frequency with which requests are generated involv-ing that pair. The average is formed by multiplying each pairwise miss ratio by thecorresponding request rate ��1j;k , summing these terms, dividing the result by the globalrequest rate ��1, and simplifying.3.2.2 Typical ValuesThis section argues that it is reasonable to expect values of h in the range 99.00{99.98%for typical systems using decentralized naming. The argument proceeds by showing thatvalues in this range are to be expected for individual client/subtree pairs with high tra�c,and contending that such pairs should dominate the global average due to locality ofreference.The graph in Figure 3.4 illustrates how the steady-state hit ratio for a given client/



3.2. CACHE PERFORMANCE MODEL 27subtree pair varies with the average validity time of cache data. In the graph, the averagetime between requests �j;k is normalized to 1 unit, and the average validity time vk (plottedon the x-axis) varies from 100 to 5000. The steady-state hit ratio hj;k is plotted on they-axis. At vk = 100, hj;k = 0:9901, while at vk = 5000, hj;k = 0:9998.
0

0.990

1.000

ratio

Hit

Validity time (interarrival time = 1 unit)

2000 4000Figure 3.4: Hit Ratio vs. Validity Time.One expects a strong locality of reference property to hold in applications of namingto large distributed systems. For example, in a distributed system containing a mixtureof personal workstations and shared �le servers, it is reasonable to expect a given user'sworkstation to use two or three �le servers almost exclusively during the course of a day,even if hundreds of servers are available. The user probably keeps all his personal �les onone �le server, all in the same local subtree, perhaps loads standard system programs (texteditor, compiler, etc.) from a subtree implemented by a second �le server, and perhapsreferences a third server to access shared �les belonging to his work group. There may be afew references to other servers, but most will be to this small subset of the total available.Call (j; k) an active client/subtree pair if subtree k is a member of the subset that clientj is using frequently.When this locality property holds, the vast majority of all name references involveactive client/subtree pairs, so their pairwise hit ratios hj;k dominate the global average hitratio h. For example, suppose that a given client j accesses subtrees 1, 2, and 3 frequently(once per unit time); subtrees 4, 5, and 6 infrequently (once per 100 time units); andsubtrees 7, 8, and 9 very rarely (once per 10000 time units). If vk = 1000 for all ninesubtrees, j's overall average hit ratio will be 99.8%, quite close to its hit ratio with respectto 1, 2, or 3, which is 99.9%. The hit ratio with respect to 7, 8, or 9 is only 9.1%, butthese misses have little e�ect on the overall average since the subtrees are accessed soinfrequently.Finally, it seems quite reasonable to expect the ratio of vk to �j;k to be 1000 or morefor active client/subtree pairs, putting the global average hit ratio into the desired range.Basically, only two types of event can cause a cache entry to become invalid: (1) a servermay crash and be restarted with a new low-level identi�er, or (2) the assignment of subtreesto servers may change. Both these events should be rare compared to name mappingrequests. In a production system, crashes should be infrequent, so that it is quite reasonableto expect that each of a server's regular clients will access it more than 1000 times betweensuccessive crashes. It is also reasonable to expect that a subtree newly assigned to a



28 CHAPTER 3. EFFICIENCYparticular server will (on average) be referenced more than 1000 times by each of its regularclients before it (or a part of it) is reassigned to a new server. For example, one does notfrequently move trees of �les from one server to another, because this typically involvescopying a substantial amount of data from one disk to another or physically moving diskpacks.3.2.3 Startup MissesThe true hit ratio h for a decentralized naming installation will, in general, be less thanthe steady-state hit ratio h, because the latter does not count the initial misses that occurwhen a new, empty cache is created. Call such misses startup misses. Startup misses havelittle e�ect on h if client caches have long lifetimes compared to �j;k, but can reduce hsubstantially if the caches have short lifetimes. This e�ect is quanti�ed below.Modifying Equation 3.4 to reect the initial misses that occur after a client cache iscreated can be shown to yield Equation 3.6:h = 1�Xj Xk ��j;k + vk �max 0; 1� �j;klj ! (3:6)In this equation, the symbol lj represents the lifetime of client cache j; that is, the numberof time units between the time it was created as an empty cache and the time it will bediscarded. Each term of the original summation has been multiplied by max(0; 1��j;k=lj).The basic insight leading to Equation 3.6 is that for each client/subtree pair (j; k),j's �rst name reference to k following the creation of its cache is always a miss, whilethe remainder are hits with probability hj;k. Thus the probability of a reference from(j; k) being a startup miss is min(1; �j;k=lj). Equation 3.6 is then obtained by writing anexpression for the probability that a given reference is neither a startup miss nor a steady-state miss (i.e., that it is a hit), then computing the weighted average over all client/subtreepairs. Note that, as with h, one can expect the global average h to be dominated by thepairwise hit ratios of active client/subtree pairs.It is clear from Equation 3.6 that the observed hit ratio h depends strongly on thelifetimes of client caches. If a typical client cache lives long enough for the client to make1000 name references to each of the subtrees it is actively using, hj;k will equal 0:999 �hj;k|only a small reduction. On the other hand, if a typical client cache only lives long enoughfor the client to make one name reference to each subtree, hj;k will be nearly zero. Thus,it is clearly important for an implementation of decentralized naming to preserve clientcache information as long as possible.The V implementation uses cache inheritance to give its caches a long lifetime. Thistechnique gives each client program a separate name cache in its own address space, ratherthan using a single cache per client machine, to avoid the overhead of interprocess com-munication on each cache reference.6 If each such cache were to start out empty, startupmisses would have a severe impact, because many programs make only a few name refer-ences during their lifetimes. The V implementation avoids this problem by starting eachnew program with a copy of its parent program's cache, thus achieving a startup miss rationear that of a per-machine cache, as shown by the measurements in the next section.6Shared memory between separate programs is not available under V.



3.3. MEASUREMENTS 293.3 MeasurementsThis section presents some measurements taken on the V implementation of decentralizednaming. Including such measurements in this thesis serves several purposes.� To show that a real system can in fact achieve the cache hit ratios that were claimedto be typical in Section 3.2.� To show how the cost �gures of Section 3.1, given in terms of packet events, translateinto CPU consumption on client and server machines.� To give the reader a concrete idea of the elapsed time needed to perform namingoperations, and of the space consumed by cache data and naming code in clients andservers.� To show that naming operations are performed frequently enough that it is importantto implement them e�ciently.The measurements were taken on the V installation at Stanford's Computer ScienceDepartment. Our installation at the time consisted of about 35 Sun and MicroVAX IIworkstations, three �le servers running the V kernel, and �ve VAX/UNIX systems pro-viding additional �le service, all interconnected by Ethernet. During the measurementperiod, the workstations were being used in their normal fashion to support day-to-daytasks including software development, word processing, and remote access to other hostson the DARPA Internet.3.3.1 Hit RatioThe measured hit ratios were excellent, and in good agreement with the analytical modelof Section 3.2. Over about 24 days of 24-hour operation, the CSD V installation showedan average cache hit ratio of 99.70%. During the half hour for which the arrival rate ofname requests was highest, the average hit ratio was 99.97%. Based on measurements ofthe request arrival rate, and estimates of the rate of client and server reboots, the modelpredicts hit ratios of approximately 99.71% and 99.997% for these two periods.Table 3.1 summarizes the statistics from which the 24-day average hit ratio was com-puted. Statistics were reported for a total of 6:033 � 107 seconds of workstation runningtime, with an average of 25.15 workstations reporting each half hour. During this time,386626 name mapping requests were issued, of which 385466 were cache hits (i.e., theywere carried out with no need for a multicast query), for a hit ratio of 99.7%. Note thismeasurement counts references to uncovered names (resulting in a failing multicast query)as cache misses, resulting in a conservative estimate of hit ratio.7Experimental period: Oct 17{Nov 9, 1985Workstation-seconds: 6:033 � 107Average workstations reporting: 25.15Total names mapped: 386626Successful multicast queries: 780 (0.20%)Failing multicast queries: 380 (0.10%)No query required: 385466 (99.70%)Table 3.1: Overall Statistics.7The current V implementation leaves many names uncovered because the name lists for its regionaldirectories are always kept o� line.



30 CHAPTER 3. EFFICIENCYTable 3.2 summarizes the statistics for the peak half hour of the measurement period.During this period, 30300 names were mapped|fully 7.8% of the 24-day total, and morethan in any other half hour slice of the measurement period. There were only 9 cachemisses, for a hit ratio of 99.97%.Experimental period: 11:41{12:11, Nov 4, 1985Workstation-seconds: 52383Workstations reporting: 27Total names mapped: 30300Successful multicast queries: 8 (0.026%)Failing multicast queries: 1 (0.0033%)No query required: 30291 (99.97%)Table 3.2: Statistics for Peak Half Hour.I obtained the data in Tables 3.1 and 3.2 by instrumenting the naming routines in V'sclient library. With the modi�ed library in place, each program collects statistics on its ownname mapping behavior, totals them, and reports them to a system statistician process justbefore exiting. Each workstation runs such a statistician process. Periodically, a masterstatistician program multicasts a request for statistics to the workstation statisticians,which respond with their current totals, then clear them. The master statistician recordsthe systemwide totals in a log �le.A rough computation based on the model of Section 3.2 shows reasonable agreementwith these measurements. The computation assumes that each client made about thesame number of name mapping requests during the experiment, and that the global hitratio was dominated by their interaction with our most frequently used �le servers. It alsoassumes that name caches are per-workstation to avoid the complication of modeling V'sper-program caches with inheritance. Currently, two servers provide the bulk of all �leservice to the CSD V installation, and they are each rebooted twice a week after dumpsare taken, so it is reasonable to assume vk is equal to 3.5 days for each. Workstations arerebooted more frequently, often more than once a day, so we can take lj to be 18 hours foreach workstation. From the data in Tables 3.1 and 3.2 we can compute �j;k to be 156.04for the 24-day experiment, and 1.7288 for the peak half hour. Plugging these �gures intoEquation 3.6 yields hit ratio estimates of 99.708% and 99.9968% respectively.Several factors could account for the di�erence between the measured and predicted hitratios. The discrepancy in the 24-day value is small, and could easily be accounted for byslightly inaccurate estimates of vk and lj, by the fact that V uses per-program caches withinheritance rather than per-machine caches, or the other shortcuts taken in computingthe prediction. The predicted hit ratio for the peak half hour is, however, quite a bithigher than the observed value. This di�erence could be due to unusual behavior duringthat particular half hour; for example, several references to little-used servers, or severalworkstation reboots.These �gures also indicate that name mapping is a common enough operation that itis important to optimize its performance. During the peak half hour, for example, therewere 0.578 name mapping operations performed per workstation per second, for a total of15.6 operations per second over all 27 workstations. In a larger installation, of course, theoverall total would be proportionately higher.3.3.2 CPU CostThe measurements reported in this section provide support for the practicality of decen-tralized naming by showing that, in our installation, only a small fraction of the availableclient and server CPU time is consumed in processing name mapping requests. It is of



3.3. MEASUREMENTS 31particular interest that, even during a peak activity period, less than 0.00361% of eachserver's available CPU time was consumed in discarding multicast requests for names itdid not cover, because (as discussed in Section 3.4 below) the cost of such multicasts is themajor obstacle limiting the size of regional directories in large systems. This measurementshows that the CSD V installation is still far from that limit.Table 3.3 reports the results of an experiment performed to measure the CPU cost ofname mapping. The experiment measured the time required to perform a trivial operation(GetContextId) on an object referenced by name, for each of three cases of interest. Inthe hit case, a cache hit allowed the operation to be completed in a single unicast messagetransaction|path (1, 3, 7) in the owchart of Figure 3.2. In the miss/covered case, thegiven name missed in the cache but was covered by some object manager|path (1, 2, 12)in the owchart. In the miss/uncovered case, the given name name was not covered by anyobject manager|path (1, 2, 5) in the owchart.8 CPU time measurements were taken onthe client workstation, on the server covering the speci�ed name, and on another serverparticipating in the naming system but not covering the speci�ed name (a \bystander").Case Client (ms) Server (ms) Bystander (ms)Hit 3:38� 0:13 3:89� 0:082 0Miss/covered 26:7� 5:5 11:6� 0:30 6:42� 0:21Miss/uncovered 16:0� 1:1 | 9:29� 0:75Table 3.3: CPU Cost Measurements.The experiment was structured as follows. A test program, linked with the standardclient naming library, ran in a loop, repeatedly trying to map the same name. (For themiss/covered case, the program cleared the name cache before each trial.) CPU usagemeasurements were taken on the test program, running on one workstation, and on in-stances of a server program running on two other workstations. The server was the Vin-memory �le server (\RAM disk"). The tests were run on Sun-2/50 workstations with10 MHz MC68010 processors and Ethernet interfaces based on the Intel 82586 chip. Atest run measured the total time for 100 to 10000 trials; the average time per trial wasobtained by dividing this total by the number of trials. The table gives the means andsample standard deviations of the times obtained on four test runs.These �gures, together with the statistics of Section 3.3.1, show that servers in theCSD V installation spend a very small fraction of their available CPU time in bystanderprocessing. Assuming there are enough servers that most servers are bystanders even onsuccessful queries, we can compute an average of 0.0221 ms per naming operation consumedon each server in processing operations in which it is a bystander. During the experimentalperiod, there were 386626 name mapping operations observed in 6:033 � 107 workstation-seconds, for an average rate of 6:4 � 10�3 operations per workstation per second|or takingthe average number of workstations to be 25, 0.16 operations per second. Thus on theaverage 0.000355% of each server's time was consumed in bystander processing over a24-hour period|a negligible amount. The peak load observed over any half hour of theexperimental period was 16.5 operations per second (with 27 workstations reporting).During this period the cache miss ratio was only 0.025% and the uncovered ratio only0.00625%, both much lower than the daily average. Repeating the above computationwith these peak load �gures, it appears that 0.00361% of each server's time was consumedin bystander processing during the peak period|still negligible.8The cost of detecting stale cache data was not measured. Detecting and replacing a stale cache entrythat maps to an existing server adds to the miss case approximately the time for mapping a name in the hitcase; an entry that maps to a nonexistent server adds approximately the time for the miss/uncovered case.



32 CHAPTER 3. EFFICIENCY3.3.3 Elapsed TimeIt is important to measure the elapsed time taken by naming operations, as well as CPUconsumption, because the two are not directly related. On the one hand, all serversreceiving a multicast request process it in parallel, resulting in some savings in elapsedtime. On the other hand, the elapsed time for each operation includes the time for one ormore packets to cross the network, and for some operations, it includes a timeout periodduring which the client is waiting for a reply that will not arrive. Examples of the latterinclude attempting to map an uncovered name or listing a regional directory with no on-line name list. For brevity, this section presents elapsed time measurements for namemapping only.Table 3.4 lists the elapsed times required for name mapping in the same three casesmeasured in Section 3.3.2. The experiment was performed using the same test programand the same hardware described in that section.Case Elapsed Time (ms)Hit 9:23� 0:24Miss/covered 47:7� 9:2Miss/uncovered 5379� 92Table 3.4: Elapsed Time For Name Mapping.Although the elapsed times for the hit and miss/covered cases are comparable to thesums of the client and server CPU times, the time for the miss/uncovered case is quitelong (over 5 seconds), because it includes a timeout by the client. In general, such atimeout requires r � tr seconds, with r (the number of retransmissions, counting the initialtransmission) determined by the required resiliency of name mapping as compared withthe frequency of omission faults in the communication medium, and tr (the time intervalbetween retransmissions) determined by the expected time to receive a response. In ourEthernet-based V installation, both the retransmission interval and the number of retrans-missions could be reduced signi�cantly were it not for the need to communicate with aguest-level implementation of the V interkernel protocol running on our UNIX systems(outside the UNIX kernel). Fortunately, uncovered names are encountered fairly rarely(0.10% of all names mapped); however, the 5-second delay can be annoying to the userwho inadvertently types in such a name. In such cases the user will typically notice hismistake after a second or two of delay and interrupt execution of the program from thekeyboard.3.3.4 Space CostOne might expect decentralized naming to have a substantial space cost, because it placessome global naming information in every server, a name cache in every client, and somenaming code in both clients and servers. Experience with the V implementation, however,has shown that the cost is low|enough so that there has been no need to put a sizelimit on the cache, and it appears that no such limit will be needed even for much largerinstallations.In servers, the space cost for naming support is not large relative to the overall size ofthe servers. For example, in the case of the V disk �le server, the server naming library(which compiles to 12408 bytes of code and static data on the MC68000) represents only14% of the total static size of the server, and is an insigni�cant fraction of its run-timesize, as the �le server uses all available memory for disk bu�ers|three to eight megabytes



3.4. LIMITS TO GROWTH 33on our Sun- and VAX-based �le servers. (The server naming library itself allocates littlespace at run time|at most a few kilobytes.)The static space cost in client programs is also small in comparison with their total size.The client naming library for V occupies 4936 bytes on the MC68000 if all of its routinesare used (not normally the case). This space cost is comparable to that imposed by otherstandard library routines|for comparison, doprnt (the main module that implements theC formatted printing routine printf) alone compiles to 1276 bytes on the MC68000.The run-time space cost in client programs is due mostly to the name cache, whichnever grows very large. Recall that a client's cache contains at most one entry for eachlocal subtree that the client has referenced. Because of locality, a given client is quitelikely to reference only a small fraction of the available subtrees during its lifetime, andwill almost certainly be actively using less than 5{10 at any given moment. In the Vimplementation, each name cache entry occupies 22 bytes of memory plus the length ofthe name pre�x it refers to, which is typically less than 32 bytes. Thus a name cache of10 entries occupies less than 540 bytes of memory.3.4 Limits to GrowthThere are some practical limits to how large a system can be built with a regional direc-tory at its root. For example, although the V implementation works well on the StanfordCSD network, it would be quite impractical to extend it to a nationwide or worldwideinternetwork without adding a global directory level. This section takes a detailed look atthe limits to growth in decentralized naming systems without global directories (regionalsystems). The next section applies these observations to systems that include global di-rectories (global systems), where they set a limit on how large a directory can grow beforeit must be made global instead of regional.3.4.1 Availability of MulticastThe availability of multicast is currently a technological limit on the size of network inwhich regional name mapping can be used, but this limit may not exist for long. Today'snetwork technology provides multicast only within a local-area network, such as a singleEthernet cable, not across long-haul networks or even across multiple Ethernets connectedby gateways. This problem would seem to set a practical limit of around 1000 hosts onthe maximum size of a regional decentralized naming system. However, techniques forinternetwork multicast are currently under investigation [9], and of course techniques forinternetwork broadcast have long been known [4,45]. Thus, it makes sense to assume thetechnological limits will be overcome, and to ask what other limits are encountered assystems are increased well beyond 1000 hosts.3.4.2 Cost Per OperationAnother limit to the growth of a regional system arises from the linear increase of namemapping cost with system size. The graph in Figure 3.1 (Section 3.1.1) illustrates theproblem: if the number of managers in the system is increased while the hit ratio remainsconstant, the average cost of mapping a name increases linearly, with the slope of the costfunction equal to the miss ratio 1�h. At some size, Cmap will become unacceptably large.Increasing the hit ratio raises this limit but does not eliminate it.In a system using replicated global name servers, on the other hand, the number ofpacket events required to map a name in the cache miss case is proportional to the number



34 CHAPTER 3. EFFICIENCY
Name
Server

Name
Server

Name
Server

Name
Server

Name
Server

Name
Server

Name
ServerFigure 3.5: Name Mapping with Distributed Name Servers.of servers in the path from the global root name server to an object, not to the totalnumber of object managers. It therefore increases only as the logarithm of the systemsize, assuming name servers at each level have about the same fanout (number of linksto servers at the next level), as suggested by Figure 3.5. (The �gure shows a fanout oftwo for clarity, but 10{100 would probably be more typical in a real system.) This growthproperty suggests that distributed name servers should be used for the uppermost levelsof extremely large hierarchical naming systems, as is done in global decentralized naming.3.4.3 Load Per ManagerA further di�culty in scaling up a regional decentralized naming system arises becausethe average naming load per object manager contains a term that is proportional to thenumber of clients, but not inversely proportional to the number of managers. That is, as thenumber of clients increases, there is a component of the load on each server that increasesproportionately and cannot be reduced by increasing the number of object managers.(\Load" here is measured in packet events per unit time.) This load component arisesdirectly from the use of multicast to handle cache misses, as explained in the followingparagraphs.A computation similar to those of Section 3.1 yields the following expression for L, theaverage naming load per manager, in a system with c clients and m object managers.L = c � a �  1� h+ 3� hm ! (3:7)Here a is the average activity level of each client; that is, each client, on the average,generates a name mapping requests per unit time. In the notation we have been using,a = c�1PjPk ��1j;k . As before, h is the cache hit ratio.Equation 3.7 is derived as follows. A cache hit costs 2 packet events at the manager; aworst-case cache miss costs a total of m+3 packet events at managers, since in the worstcase, a multicast to all m managers is required.9 Thus the average cost of mapping a singlename is [2h+ (m+3)(1� h)]m�1 packet events per manager. Multiplying this expressionby the client activity level and number of clients gives Equation 3.7.One way of looking at Equation 3.7, illustrated in Figure 3.6, is that it implies a linearincrease in the naming load on each server as a system increases in size, with the slope ofthe increase depending on the cache hit ratio. The graph plots the number of clients onthe x-axis and the number of name mapping packet events per server per unit time on the9When only manager packet events are counted, the worst case is path (1, 3, 6, 13, 2, 12) in Figure 3.2.



3.4. LIMITS TO GROWTH 35y-axis. It assumes that the ratio of client hosts to server hosts remains constant as thesystem grows (that is, c = �m for some constant �), and that a also remains constant; inthis �gure, � = 10 clients per server and a = 1 request per time unit.
400 6002000

40

20

0

h = hit ratio

h=.9990

h=.9999

h=.9900 h=.9950 h=.9970

events

per

server

unit

Packet

per

Number of clients (assuming 10 clients per server)

time Figure 3.6: Load Per Server vs. System Size (With Constant �)As the system continues to grow, eventually the servers will become saturated by theincreased naming load, and it will be necessary to reduce the number of clients per serverto compensate. This observation leads to another way of looking at the growth problem,illustrated in Figure 3.7. The graph assumes that each server has a �xed load-handlingcapacity L of 30 naming packet events per unit time, and that the number of clients perserver � is set just low enough to keep the servers within that capacity. It plots � on they-axis against c on the x-axis. Under these assumptions, the number of clients that canbe handled per server decreases linearly, but slowly, as the total number of clients grows.For example, with a hit ratio of 0.997, the number of clients per server decreases from 15to 9 as the total number of clients grows to 4000.
2000 40000

15

10

5

0

h=.9900 h=.9950

h=.9970

h=.9990

h=.9999

server

per

clients

Max

Number of clientsFigure 3.7: � vs. System Size (Constant Naming Load Per Server).



36 CHAPTER 3. EFFICIENCYIt is important to note that Figure 3.7 actually overestimates the problem. In reality,servers do not have a �xed limit on the number of naming packet events they can handle;instead, there is a limit on the total packet events. There are many sources of packetevents that do not increase with system growth, as long as the number of servers growslinearly with the number of clients|for instance, reading from an open �le. Thus, forexample, if there are an average of 8 non-naming packet events generated for every clientname mapping request (so that naming represents 20% of the packet events when thereare no cache misses), and each server can handle 150 total packet events per unit time,� decreases much more slowly, as shown in Figure 3.8. Again, � is plotted on the y-axisagainst c on the x-axis.
2000 40000

15

10

5

0

Number of clients

Max

clients

per

server

h=.9999
h=.9990
h=.9970
h=.9950

h=.9900

Figure 3.8: � vs. System Size (Constant Total Load Per Server).In light of the results of this and the previous section, it is clear that regional decen-tralized naming systems cannot be scaled up inde�nitely; however, it appears that systemsincluding thousands of hosts can be quite practical, at least from a performance standpoint.3.5 Extension to Global SystemsThis section argues that the above results for regional systems can be used to establish alimit on how high in a global naming hierarchy the boundary between regional and globaldirectories can be drawn. That is, they determine which directories must be made global.A global decentralized naming system can be viewed as a set of regional subtrees hang-ing from the common global directory mechanism.10 Each subtree can then be analyzedas an independent system|the global directory servers direct each client name request toexactly one subtree, so each one receives some fraction of the total mass of requests.The above analysis of name mapping in a regional system applies almost without changeto a regional subtree S in a global system, with the total number of managers (m) replacedby the total number of participants in the root of the subtree (mS).11 The only di�erenceis that a worst-case miss costs r+ d+m+3 instead of r+m+3, where d is the number of10A regional subtree is a complete subtree of the global naming hierarchy, whose root is a regional directorythat has a global directory as its parent.11Recall that a directory's participant set includes the union of the participant sets of all its descendants,so every manager that names anything in a subtree participates in the subtree's root.



3.6. CHAPTER SUMMARY 37packet events incurred in going through the global directory service to �nd the participantgroup for S. The term d is at most equal to twice the path length from the global root tothe root of S (because each global directory could be kept at a di�erent directory server,requiring one unicast packet from each directory's server to the next). The path lengthis roughly proportional to the log of the total number of global directories in the system;thus it is small enough compared to m that it can be treated as a constant. It thereforehas no more e�ect on the analysis or results than would a change in the value of r.Therefore, in a global system with similar parameters to the regional systems discussedearlier, any directory with more than a few thousand participants should be consideredglobal rather than regional. The exact cutover point depends on the relative values that areplaced on e�ciency and resilency. E�ciency is improved by switching to global techniquesin directories with fewer participants, but as shown in the next chapter, these techniquesgive poorer resiliency. On the other hand, resiliency is improved by using regional tech-niques, but as was shown above, these techniques give poorer e�ciency.3.6 Chapter SummaryThis chapter has evaluated the e�ciency of decentralized naming. Both the absoluteperformance and the scalability of regional name mapping techniques have been shown todepend critically on the cache hit ratio. The chapter has described a model of cache perfor-mance that predicts high hit ratios in typical decentralized naming installations|rangingfrom 99% to 99.98% and higher|and has validated the model using measurements takenon the V implementation. Using these �gures, estimates of the maximum practical size fora regional directory have been derived. These estimates indicate that any directory withmore than a few thousand participants should be treated as global rather than regional.



Chapter 4Fault ToleranceTo be practically useful, a large distributed system must include some degree of faulttolerance. As a system grows to include more and more components, it becomes lessand less likely that all components will be functioning at any given moment|hosts crash;networks drop packets or become partitioned. Because such faults are common, theyshould at worst cause temporary and localized failures near where they occur. Ideally, nomatter how many faults occur, any set of hosts that remain up and interconnected shouldcontinue interoperating as usual; in particular, if hosts A and B remain connected, eachshould continue to be able to access all objects stored on the other by name.This thesis de�nes two criteria for fault tolerance, called reliability and resiliency.Informally, a system is reliable if it meets its speci�cation in spite of the occurrence offaults; it is resilient if faults do not prevent it from performing its intended service. Thesecriteria are distinct because fault-tolerant systems typically specify two possible correctoutcomes for each operation request: the operation may succeed, performing the requestedaction and returning results to the invoker, or it may fail, returning an error message.Any other outcome|such as returning incorrect results with no error message|violatesthe speci�cation. Thus an operation's implementation is reliable if faults do not cause itto violate its speci�cation; it is resilient if faults do not cause it to fail.1This chapter evaluates the fault tolerance of decentralized naming. It considers onlyomission and crash faults, not Byzantine faults. Reliability is not di�cult to achieve underthis fault model, so the chapter concentrates on the more interesting problem of achievingresiliency. The main results presented are as follows:� As the global level of the name service is made more resilient, the resiliency ofdecentralized name mapping approaches the optimum achievable in any distributednaming system; it would achieve optimum resiliency if the global level could be madeperfectly resilient. Moreover, decentralized name mapping does achieve optimumresiliency for the names of objects with nearby managers|managers that are withinrange of the multicast sent out when a client's cache misses entirely.� Decentralized binding check has a suboptimal resiliency, which varies depending onthe replication level of regional name lists. It is argued that the achieved resiliencyis \good enough" in a practical sense.� Name binding cannot be made as resilient as can name mapping, no matter whetherdecentralized naming or another distributed technique is used. A common specialcase, however|creating an object and simultaneously giving it a name that wasalready covered by its manager|has the same resiliency properties as name mapping.1This concept of failure is similar to the notion of exception in programming languages or abort in databasesystems. Failure is an unusual event that may be undesirable, but is not catastrophic, because the systemreports it and remains in a consistent state. 38



4.1. SYSTEM MODEL 39The next section describes the system model used, while the following four sectionsdiscuss the most important naming operations. Section 4.2 evaluates the resiliency ofdecentralized namemapping, Section 4.3 that of binding check, Section 4.4 directory listing,and Section 4.5 name binding. The initial sections take the resiliency of the global directoryservers as a parameter; Section 4.6 estimates the resiliency that can be expected of them.Section 4.7 summarizes the chapter.4.1 System ModelThe arguments to be presented in this chapter require a more precise model of naming anddistributed systems than has been given so far. Such a model is outlined in this section.4.1.1 FaultsFor our purposes, a distributed computer system consists of a set of host computers in-terconnected by a multicast network. A multicast network allows any host to transmit amessage and have it delivered to one or many destination hosts in a single operation. Mul-ticasts are addressed to host groups; the membership of a host group g is the set of hoststhat have taken the necessary (implementation-dependent) action to receive messages sentto address g.2The system is assumed to be subject to crash and omission faults (only). Hosts aresubject to crash faults; when a host crashes, it immediately ceases sending or receivingmessages. The network is subject to omission faults; that is, dropped packets. On amulticast, omission faults can occur independently for each group member.For simplicity, this chapter generally considers crash and omission faults together, asaccess faults. An access fault on a given host B is said to have occurred when either (1) Bcrashes, (2) an omission fault prevents a message addressed to B (or to a group includingB) from reaching B, or (3) an omission fault occurs on a message sent by B.Each object in the system is managed by some host. An object's manager stores theobject's representation, implements all operations on the object, and accepts operationrequests from other hosts.3 (Objects that logically have multiple managers are viewedas consisting of multiple subobjects, each with a single manager, all bound to the samename.) The host at which an operation request originates is called the requestor or clienthost.Most operations are speci�ed to have two possible correct outcomes: the operation maysucceed, performing a speci�ed action and returning a success indication, or it may fail,returning an error indication. Any other outcome violates the speci�cation; it is incorrect.In the failure case, there is no guarantee that the speci�ed operation was not performed;in particular, cases where the requestor does not receive any reply across the network aretreated as failures, even though the object's manager may have received the request andcarried out the action.The resiliency of an operation's p's implementation I(p) is characterized by its failureset FI(p): the set of all minimal fault combinations that can cause I(p) to fail. A combi-nation (set) f of faults is said to be capable of causing I(p) to fail if there is some set ofinitial conditions and parameters to p for which p's speci�cation permits it to succeed, butthe implementation I(p) can fail when all the faults in f occur together. For example, if a2For example, on an Ethernet or other bus network, a host joins group g by instructing its networkinterface to accept packets addressed to g. On an internetwork, joining a group may involve sending amessage to a gateway or some other agent [9].3See Jones [23] for de�nitions of object and operation.



40 CHAPTER 4. FAULT TOLERANCE�le is implemented using read-any/write-all replication, with copies at hosts A and B, thefailure set FRead of the Read operation is f fA;Bg g, while FWrite = f fAg; fBg g.4Similarly, the reliability of an operation's implementation is characterized by its in-correctness set: the set of all minimal fault combinations that can cause it to violate itsspeci�cation. Implementations are normally expected to be all-reliable against omissionand crash faults; that is, their incorrectness sets should be empty.The resiliency of two implementations can be compared by comparing their failure sets.Failure sets are partially ordered: F � F 0 if and only if every element of F 0 is a subsetof some element of F and F 6= F 0. If Fa � Fb for two implementations a and b, a issaid to be more resilient than b; that is, a \greater" failure set is de�ned to be one thatgives greater resiliency. An implementation is all-resilient if its failure set is empty. Thus,continuing the previous example, Read on the replicated database becomes more resilientif the number of copies is increased to three (at hosts A, B, and C), because its failureset becomes f fA;B;Cg g. Also, Read is more resilient than Write. Note that failuresets under � form a lattice, whose greatest element is the empty set ; (all-resiliency) andwhose least element is the set f;g, if the greatest lower bound of F and F 0 is de�ned tobe ff : f 2 F [ F 0 ^:(9f 0 2 F [F 0; f 0 � f)g. Intuitively, the greatest lower bound of twofailure sets F and F 0 represents the best resiliency that is not greater than either F or F 0.If an operation a is implemented by performing operations b and c, both of which mustsucceed for a to succeed, then Fa is the greatest lower bound of Fb and Fc.4.1.2 NamingA distributed naming system stores a binding relation, a relation between names andobjects, and provides operations to examine and modify the relation. A name is said to bebound if it is related to some object; unbound if not. A speci�c name is related to at mostone object, as opposed to generic or group names, which may be related to more thanone object. In this chapter, all names are assumed to be speci�c. The binding relationis stored in a distributed fashion: each host holds a set of assertions about the relation.This representation is consistent if no contradictions arise when all the assertions are takentogether; it is complete if the entire binding relation can be deduced from them.5A read quorum for a name n is a minimal set of hosts q such that pooling all assertionsheld by hosts in q gives su�cient information to determine either that (1) n is bound to anobject On, or that (2) n is unbound. The symbol Qn represents the set of all read quorumsfor n. (For example, if any two of the three hosts a; b; c make up a read quorum for n,Qn = f fa; bg; fb; cg; fa; cg g.) A manager M covers a name n if fMg is a read quorum forn. It exclusively covers n if it is the only read quorum for n (and is aware that it is theonly quorum).A write quorum for a name n is a minimal set of hosts w for which one can changewhat n is related to (preserving consistency) by changing only assertions held by hosts inw. Note that every write quorum for a given name n must intersect every read quorumfor n.A characteristic feature of the decentralized approach to naming is its use of decentral-ized binding storage. Binding storage is decentralized if and only if, for any name n boundto an object On that is managed by host M(On), Qn = f fM(On)g g. That is, each objectmanager is by itself a read quorum for the names of its objects (and no other set of hosts4These sets are written in terms of access faults, with an access fault on a given host denoted by thehost's name. It is assumed here and throughout the chapter that requestors do not crash while waiting foroperations to complete.5It is assumed that changes to these assertions are (or can be) totally ordered in time by a system ofLamport clocks [26], so that \the set of all assertions held at time t" is well-de�ned.



4.2. NAME MAPPING 41is a read quorum). This knowledge is what makes multicast name mapping and on-usecache consistency checking work.4.2 Name MappingHow reliable and resilient is name mapping in a decentralized naming system? To an-swer that question, this section gives a speci�cation for name mapping and a model forthe decentralized name mapping protocol, then considers how well the model meets thespeci�cation in the presence of faults.4.2.1 Speci�cationThe name mapping operation accepts a name n and a message m as its arguments. Ifn is bound to an object On, the operation sends the pair (n;m) to the object's managerM(On) and returns a reply, or else fails. If n is unbound, the operation always fails.This speci�cation takes the view that the main purpose of name mapping is as the�rst step in performing other operations whose target objects are speci�ed by name. Thename mapping step locates the target object and sends its manager a request message; themanager in turn carries out the requested operation and sends back its results in a replymessage.4.2.2 ProtocolThis chapter uses the following (simpli�ed) model of the decentralized name mappingprotocol.Binding storage is assumed to be decentralized. When an object manager M receivesa mapping request (n;m), it examines its local assertions about n and proceeds as follows.If it knows n to be bound to an object On that it manages, it replies \success." If it knowsn to be unbound, it replies \failure: name unbound." Otherwise, it does not reply.The global directory service is modeled as another operation Glob that is called as asubroutine by the name mapping protocol. When Glob is invoked by a client host H withparameters (n;m), it either causes a name mapping request with parameters (n;m) to besent to a set of object managers S that includes every read quorum for n, or else fails.(The request is marked as having come from H, so any replies from members of S aredirected to H.)Each client host H maintains a cache CH. A cache is a �nite set of entries of the form(N; a), where N is a set of names and a is a manager or group address. Each client alsoholds the address bH of a group of object managers; the members of bH are said to benearby to H.6A client host H attempting to issue a name mapping request (n;m) runs the followingalgorithm:1. Select an entry (N; a) from CH, such that n 2 N . If no such entry exists, go tostep 5.2. Send (n;m) to address a and wait until either (1) a reply arrives, or (2) a timeoutperiod t expires.6In the implementation, bH corresponds to the use of scoped multicast to send to all object managersthat are near the client|say, within a small number of hops on the network.



42 CHAPTER 4. FAULT TOLERANCE3. If a reply arrives, return it. Done.4. If no reply arrives, delete (N; a) from the cache and go to step 1.5. Send (n;m) to address bH and wait until either a reply arrives or the timeout periodt expires.6. If a reply arrives, return it. Done.7. If no reply arrives, invoke Glob(n;m) and wait until either a reply arrives or thetimeout period t expires.8. If a reply arrives, return it. Done.9. If no reply arrives, return failure. Done.4.2.3 ReliabilityThe �rst question to be answered about this protocol is whether it is reliable|does it meetits speci�cation in spite of omission and crash faults? It is straightforward to show that itdoes.Theorem 4.1. Decentralized name mapping is all-reliable.Proof: We �rst show that the protocol always terminates, then show that it meets itsspeci�cation at all exit points.Except for the loop in steps 1{4 of the algorithm run byH, the protocol consists entirelyof straight-line code, and all steps that wait for a message from another host are protectedby timeouts. The loop always terminates because CH is of �nite size, and step 4 deletesone element each time around the loop, so at worst, step 1 must jump to step 5 when CHbecomes empty.All exits from H's algorithm either return failure due to no reply, or return a reply(which may itself read \failure"). A failure return always meets the speci�cation. If anon-failure reply is returned, it must be correct: the protocol permits a non-failure replyto be sent to H only by M(On), and that only after M(On) has received (n;m), in whichcase the speci�cation has been met.4.2.4 ResiliencyThe resiliency of this protocol is the next question of interest. This section shows that ithas optimum resiliency for names bound to objects with nearby managers, and that itsresiliency for other names is limited only by the resiliency of the global directory servers|that is, its resiliency is the greatest lower bound of the optimum resiliency and the resiliencyof Glob.De�nition 4.2. An operation implementation is said to be ABMA-resilient if its failureset is f fM(O)g g, where O is the object being operated on andM(O) is its manager. Thatis, the only fault combinations that can cause such an implementation to fail are thosethat include the object's manager. (ABMA stands for \all but manager access.")Name mapping with parameters (n;m) is considered to be an operation on the objectOn bound to n if n is bound.Lemma 4.3. Decentralized name mapping with arguments (n;m), n bound, is ABMA-resilient ifM(On) is nearby to the client hostH; otherwise its failure set Fnm is the greatestlower bound of f fM(On)g g and the failure set of Glob. (If n is unbound, Fnm is empty.)



4.2. NAME MAPPING 43Proof: First, suppose that H's algorithm exits at step 3, 6, or 8. These steps canreturn failure only if the received message indicated \failure: name unbound." But in thatcase, the name was in fact unbound, in which case the speci�cation requires failure to bereturned; so any faults that may have occurred during execution of the protocol were notthe cause of the failure.Otherwise, H's algorithm must exit at step 9. Case 1: Suppose n is bound andM(On)is nearby to H, that is, M(On) 2 bH . If M(On) receives (n;m), the protocol requires it toreply: because binding storage is decentralized, M(On) knows locally that n is bound toOn. Now in step 5 (n;m) was sent to a group including M(On), so if no reply is received,either the request message was not delivered to M(On) (omission fault), M(On) crashed,or M(On)'s reply was not delivered (omission fault), and all these cases are access faultson M(On). Therefore the operation fails only if there is an access fault on M(On)|it isABMA-resilient.Case 2: In step 7, Glob(n;m) was invoked. There are then two possibilities: (i) Globsent a name mapping request to a group including a read quorum for n, or (ii) Glob failed.In subcase (i), if n is bound, Glob sent the request to a group including every read quorumfor n. By an argument similar to that of case 1, if no reply arrived, there must have beena manager access fault. (And as before, if n is unbound, the speci�cation requires a failurereturn, so any faults that may have occurred were not the cause of the failure.) In subcase(ii), Glob failed. Therefore, in case 2, the only faults that can cause name mapping tofail are manager access faults or a combination of faults that causes Glob to fail. So thefailure set in this subcase is the greatest lower bound of f fM(On)g g and the failure set ofGlob.Lemma 4.4. ABMA-resiliency is the optimum (i.e., greatest achievable) resiliency forname mapping.Proof: Because name mapping is speci�ed to succeed only when it sends a messageto M(On) and receives a reply, it cannot succeed in the presense of an access fault onM(On). Therefore a failure set equal to f fM(On)g g, i.e., ABMA-resiliency, is an upperbound on the resiliency of any implementation. And ABMA-resiliency is achievable|inparticular, decentralized name mapping achieves it if the system is con�gured with everyobject manager host nearby to every client host (by Lemma 4.3).Finally, the main result of this subsection follows immediately from the above lemmas.Theorem 4.5. Decentralized name mapping with arguments (n;m), n bound, has theoptimum resiliency achievable for name mapping if M(On) is nearby to the client host H;otherwise its failure set Fnm is the greatest lower bound of the optimum failure set andthe failure set of Glob. (If n is unbound, Fnm is empty.)Proof: By Lemma 4.4, the phrase \ABMA-resiliency" in Lemma 4.3 can be replaced by\optimum resiliency," and the set f fM(On)g; g by \the optimum failure set."4.2.5 Reusable Directory Identi�ersAlthough decentralized name mapping as modeled above is all-reliable, an important prac-tical performance optimization involving reusable directory identi�ers can compromise re-liability if it is not implemented carefully. This subsection describes the optimization,discusses its importance, and outlines a way to maintain all-reliability when it is used.The basic idea of the optimization is to avoid having object managers redo nameprocessing that has already been done by the client. It operates as follows. Cache entriesare extended to consist of a name pre�x p (representing the set N of names that begin



44 CHAPTER 4. FAULT TOLERANCEwith pre�x p), a manager or group address a, and a directory identi�er d. The directoryidenti�er is a compact numeric identi�er for the directory named by p, assigned by themanager or group a. If a client's cache lookup returns entry (P; a; d), the client sendsthe triple (d; n0;m) to the indicated address a, where n0 is the su�x remaining after p isstripped from n, in place of of sending the full name n and messagem to a. Each managerthat receives this request begins running its internal name lookup routine at directory d,thereby avoiding lookups in all the directories on the path from the root to d|the clienthas e�ectively done that work as part of its cache search routine.A reliability problem arises if the identi�ers a and d are restricted to be numberschosen from a �nite set. As new object managers and directories are created and old onesdestroyed, eventually the system will run out of unused pairs (a; d) and must begin toassign new meanings to previously used pairs. If at the time (a; d) is assigned to a newdirectory named p0, an old, stale entry (P; a; d) remains in the cache of some client H, itcan result in incorrect name mapping. For example, say p is [edu/stanford/dsg/user/john and p0 is [edu/stanford/dsg/user/mary. Then if H attempts to open the �le [edu/stanford/dsg/user/john/profile, it will get [edu/stanford/dsg/user/mary/profileinstead.One way to solve this problem is to treat directory identi�ers and manager (group)addresses as T -stable identi�ers (in Cheriton's terminology [8]). An identi�er is T -stable ifit is not reused for at least T seconds after becoming invalid, for some speci�ed value of T .In this application, each manager or group a must avoid reusing any directory identi�er dit has issued for at least Ta seconds after its previous assignment becomes invalid, and thesystem must avoid reusing any address a for at least Tsys seconds after its old assignmentbecomes invalid. The reliability problem is then avoided if clients discard the directoryidenti�er d from any cache entry (P; a; d) that was last successfully used (or acquired) morethan max(Ta; Tsys) seconds ago. When a client �nds such an entry in its cache, it is stillable to reduce network tra�c by sending only to a rather than its nearby group bH , butthe optimization of sending only (d; n0;m) no longer applies; the client must submit thefull name n.4.3 Binding CheckThere is a serious practical problem with the name mapping operation as speci�ed above:when it fails, it is not required to indicate whether it failed because the given name wasunbound or because of a fault. The decentralized name mapping protocol does sometimesreturn \failure: name unbound" for unbound names, but at other times it returns \failure:no reply," in which case the client does not know for certain whether the name was bound.To focus on this problem and evaluate its di�culty, this section de�nes a binding checkoperation and discusses its resiliency.4.3.1 Speci�cationThe binding check operation accepts a name n and returns the name's binding status(bound or unbound), or else fails, returning an error message.4.3.2 Achievable ResiliencyThis section considers what resiliency is achievable in any sort of distributed naming sys-tem, not necessarily decentralized. It is shown that all-resiliency can be achieved if binding



4.3. BINDING CHECK 45check is optimized in isolation, but there is a tradeo�: name binding and unbinding becomeless resilient as binding check is made more resilient.Let a binding check quorum for a name n be a minimal set of hosts whose pooledknowledge su�ces to determine whether n is bound, and let BCQn represent the set ofall such quorums for n. Note that a binding check quorum need not be a read quorum,because the hosts are not required to have enough knowledge to determine what n is boundto, only whether it is bound; however, every read quorum is also a binding check quorum.Clearly, a correct implementation of binding check can return success only if the requestorcommunicates (perhaps indirectly) with every member of some binding check quorum forthe name n|if it is unable to do that, it cannot have gathered enough information todetermine with certainty whether n is bound.Under these de�nitions, one can in principle implement binding check with all-resiliencyby con�guring the binding check quorums appropriately. In particular, suppose that everyhost is made a binding check quorum for every possible name, by including the bindingstatus of every name among every host's locally-held assertions about the binding relation.Then binding check can be performed as a local operation at any requesting host, sonetwork failures or crashes at other hosts cannot cause it to fail. This is, however, the onlyimplementation that achieves all-resiliency: if some host H is not a binding check quorumfor some name n, and H requests a binding check on n, a su�cient number of omissionfaults on the network can prevent H from communicating with any binding check quorumfor n, thereby causing the request to fail. In practice, of course, such an implementationis unworkable, because changing the binding status of any name would require updatingthe local knowledge of every host|giving name binding and unbinding disastrously poorresiliency and e�ciency.More generally, as one increases the resiliency of binding check, the achievable resiliencyfor name binding is reduced. This tradeo� arises because, �rst, if a given name n isunbound, before a correct implementation of the name binding operation can succeedwhen invoked on n, it must communicate (perhaps indirectly) with at least one memberof every binding check quorum for n|if it missed some quorum q entirely, the pooledassertions of q's members would continue to identify n as unbound. So a combination ofaccess faults on every member of any binding check quorum for an unbound name n mustcause name binding on n to fail, implying that each binding check quorum is a memberof (or a superset of a member of) the failure set NBFn for name binding on n|i.e., thatBCQn is an upper bound on the failure set of name binding. Therefore, as one improvesthe resiliency of binding check by increasing the number (or reducing the size) of bindingcheck quorums, the upper bound on the resiliency of name binding is reduced. A similarargument holds for unbinding bound names.Given this tradeo�, neither the resiliency of binding check nor that of binding canbe the sole criterion for evaluating the \goodness" of a naming system; they must beweighed according to their relative importance in the intended application. The nextsection describes where decentralized naming in general, and the V implementation inparticular, fall along the scale of possible resiliency choices.4.3.3 Resiliency When DecentralizedThe simple model of decentralized naming presented in this chapter imposes just one con-straint on the resiliency tradeo� between binding check and binding: because decentralizedbinding storage requires fM(On)g to be a read quorum for n if n if bound, it must also bea binding check quorum for n. The model says nothing about the composition of quorumsfor unbound names.More constraints are imposed by an actual implementation using global, regional, andlocal directories (as discussed informally in earlier chapters), but some exibility remains;in particular, the resiliency of binding check can be increased or decreased by adding or



46 CHAPTER 4. FAULT TOLERANCEdeleting on-line copies of the name list in regional directories. The remainder of this sectioninformally evaluates the achieved resiliency, then gives some justi�cation for the choicesmade.Consider the name bound case �rst. For a bound name n, the set of binding checkquorums BCQn is almost the same as the set of read quorums Qn. The only di�erenceis that each name list holder in a regional directory is a binding check quorum for everyname directly under the directory,7 even though it is not a read quorum. Binding checkaccordingly uses a slightly modi�ed version of the name mapping protocol; the di�erencesare as follows:� There is no request message m.� The reply message \failure: name unbound" is replaced by \unbound."� Other reply messages are replaced by \bound."� An object manager host M (including a name list holder) replies \bound" wheneverit knows that the given name n is bound, not only when it is bound to an objectmanaged by M .� Glob is replaced by Glob0, which relays binding check requests to every binding checkquorum, not only to every read quorum.The resiliency of this protocol is close to ABMA, but somewhat better, because for aname n that is directly under a regional directory d, failure can only be caused by acombination of access faults on M(On) and all holders of the name list for d. To illustratethe di�erence, suppose [edu/stanford/mailbox is a regional directory of mailboxes storedon various hosts at Stanford. When a user tries to send mail to [edu/stanford/mailbox/horace.jones, he would like to �nd out promptly and reliably whether that mailboxactually exists, even if the mail cannot be delivered immediately. If there is a name listholder for the directory on line, it can report promptly whether the mailbox exists, even ifthe host it is stored on is down; without a name list holder, there is no way to distinguishbetween the cases of \host down" and \no such mailbox."The name unbound case remains to be considered. Let the bound pre�x B(n) of apathname n be the longest pre�x of n that is bound. The failure set Fbc for binding checkon an unbound name n varies depending on the implementation style|global, regional, orlocal|used for the directory named by B(n).1. If B(n) is a global directory, Fbc is equal to FGlob0 , the failure set for the globaldirectory service.2. If B(n) is a regional directory, Fbc is the greatest lower bound of the set of name listholders for B(n) and the set FGlob0 , or just the set of name list holders if they are allnearby to the requestor. If there are no on-line name list holders for B(n), bindingcheck always fails when n is unbound.3. If B(n) is a local directory managed byM , Fbc is the greatest lower bound of f fMg gand FGlob0 .Veri�cation of these results is left to the reader; the arguments are similar to those usedin Section 4.2.4 above.This level of resiliency is arguably a reasonable choice for practical implementationsof decentralized naming. For �le names, it is similar to that provided by other namingservices. For example, in Lampson's design [27], the global name service records thebinding of each �le server's name, but not the names of individual �les on the servers. Sowhen an (unreplicated) �le server is down, binding check on its own name|that is, on the7A pathname n is directly under a directory d if deleting the last component of n leaves the name of d.



4.4. DIRECTORY LISTING 47name of its root directory|can still succeed, but on any �le below its root, the operationfails. The same is true of decentralized naming, except in cases where the �le server'sroot is de�ned in a regional directory with no on-line name list holders. In such a case,when the server is down, binding check fails even on its root directory|in a sense, thenaming system cannot tell whether the server exists when it is down. This failure modeis certainly undesirable in some applications (if users are uncertain what �le servers existor what their names are, for example), but it only arises when the system administrationchooses to con�gure a regional directory without on-line name list copies, so it can alwaysbe avoided when unacceptable.4.4 Directory ListingAnother operation commonly provided in naming systems is directory listing; this sectionbriey (and informally) discusses its resiliency. The directory listing operation providesa complete list of the single-component names that are bound directly under a givendirectory. The operation fails if it is unable to provide a complete list. For simplicity, thisde�nition does not require any information about the named objects to be returned|onlytheir names.The resiliency of directory listing is closely related to that of binding check, becauseeither operation can be de�ned in terms of the other. On the one hand, one can implementbinding check on a pathname n by listing each directory whose name is a pre�x of n(proceeding from left to right), and checking whether the next component of n is in thereturned listing. On the other hand, asking for a listing of directory d amounts to askingwhich names in the directory8 are bound; it returns the set of all names in the directoryfor which binding check would return \bound," or fails if binding check would fail for anyname in the directory. Thus any set of hosts q that includes a binding check quorumfor every name of the form d=c is (or includes) a directory listing quorum for d|thatis, the pooled information of the hosts in q is su�cient to perform the directory listingoperation on q. Therefore, one would expect the failure set of a reasonable implementationof directory listing on d to be the greatest lower bound taken over the failure sets for bindingcheck for every name of the form d=c. It is straightforward to achieve this resiliency in adecentralized naming system|the name of the directory is mapped in the usual way tolocate a local manager, regional name list holder, or global server for the directory; thatagent then returns the directory listing.Under the above de�nition, unfortunately, directory listing cannot be usefully appliedto regional directories that have no on-line name list holder. On any such directory withat least one unbound name, a reliable implementation of listing must always fail, becausebinding check on unbound names always fails in such directories. Even if an implementationof listing could �nd all the bound names, it would have no way to be certain that its listwas complete|that is, that all of the omitted names were unbound|and so it could notsafely return success.To work around this problem, the V system de�nes and implements a di�erent direc-tory listing operation for regional directories without on-line name lists, called best-e�ortsdirectory listing. The operation is speci�ed to return a subset of the names bound in agiven directory (or fail). There is no guarantee about how many names are returned, butthe implementation makes its best e�ort to return all names bound to currently accessibleobjects. Best-e�orts listing is substantially weaker than ordinary directory listing, but isuseful in cases where inaccessible objects are not of interest|for example, listing the hoststhat are currently available for remote execution. In the V implementation of best-e�ortslisting, a client multicasts its listing request to a host group that includes all participants8Names of the form d=c, where c is a single-component name



48 CHAPTER 4. FAULT TOLERANCEin the target directory (perhaps using the global directory service to relay the request tothe appropriate group), and collates all the replies that come in. It then retransmits therequest several times, each time including a list of hosts that have already responded andtherefore should not reply again, until no further replies are received. The resulting listclearly includes the names of all accessible objects|any missing name could only havebeen omitted because of an access fault on the manager of the bound object.4.5 Name BindingThe �nal major operation whose resiliency has not yet been discussed is name binding. Thissection shows that the general case of name binding cannot be made ABMA-resilient inany distributed naming system (decentralized or not). Nevertheless, an important specialcase|object creation by name|has the same resiliency properties as name mapping.4.5.1 Limitations on ResiliencyEven if optimized in isolation from other operations, there is a limit to the resiliencythat can be achieved in a distributed implementation of name binding: the followingtheorem shows that it cannot be made all-resilient, or even ABMA-resilient. Intuitively,this limitation arises because the network can partition, and when it does, there must besome way of preventing inconsistent bindings from being established in two partitions.Theorem 4.6. No all-reliable implementation of name binding in a distributed systemcan be ABMA-resilient. (The system is assumed to include at least two object managerhosts, but its naming is not assumed to be decentralized. Its representation of the bindingrelation is assumed to be complete, so that every name has at least one read quorum.)Proof: Let n be a name, and let Qn be the set of all read quorums for n. Let U bethe set of all hosts. Case 1: If Qn 6= fUg, choose a quorum q 2 Qn such that q 6= U ,and choose a host b 2 U such that b 62 q. Then suppose that b issues a request to bindthe name n to some object O that b itself manages, and that n is currently unbound, butaccess faults prevent b from sending a message to any host in q, even indirectly. So b'srequest cannot have caused the assertions held by any host in q to have changed. Now ifthe binding request succeeds, we have a contradiction: q is a read quorum for n, so thepooled assertions of all hosts in q su�ce to tell whether n is bound, but n's binding statusis claimed to have changed without change to the assertions held by any member of q. Ifthe request fails, ABMA-resiliency is violated. Case 2: If Qn = fUg, assume some hostf 2 U crashes, and choose a host b 2 U di�erent from f . Now suppose that b issues arequest to bind the speci�c name n to some object O that b manages. In this case, thehosts that remain up do not have enough information to determine whether n is alreadybound, so the binding request cannot succeed without risk of a consistency violation. Ifthe request fails, however, ABMA-resiliency is again violated.There is also a practical limit on the resiliency of name binding, imposed by its in-teraction with binding check and name mapping. Carrying out a name binding requestrequires contacting every member of some write quorum, so increasing the resiliency ofname binding entails increasing the number of write quorums (or reducing their size). Butbecause every read quorum must intersect every write quorum to assure consistency, sucha change implies an increase in the size of the read quorums (or a reduction in their num-ber). Making read quorums larger reduces the e�ciency of name mapping and bindingcheck|dramatically if the quorums were initially small (as with decentralized naming: onemanager, or one manager plus a few global directory servers). Making the quorums largeror reducing their number also reduces resiliency by increasing the number or reducing the



4.5. NAME BINDING 49size of elements in the corresponding failure sets. Therefore, because name mapping isthe more common operation, it seems appropriate for a naming design to maximize theresiliency and e�ciency of mapping, not binding, as decentralized naming does.94.5.2 Object Creation by NameDespite its limited resiliency in the general case, there are special cases of name bindingthat have more attractive resiliency properties|in particular, object creation by name issimilar to name mapping in both its optimum resiliency and its achieved resiliency in adecentralized implementation.Object creation by name accepts a name and object type as its arguments, creates anew object of the speci�ed type, and binds the name to it. The new object is managedby the server that previously covered the given name. The operation fails if the name wasalready bound, if it was not exclusively covered by a single manager, or if the coveringmanager could not be accessed. Creation by name is one of the most common ways ofbinding names in centralized computer systems, and there seems to be no reason it shouldnot be equally prevalent in distributed systems.10ABMA-resiliency is the optimum resiliency for object creation by name: The operationcertainly requires access to the new object's manager, so its resiliency can be no betterthan ABMA. And as with name mapping, ABMA-resiliency is achieved in a decentralizedimplementation if the system is con�gured with every object manager nearby to everyclient.A decentralized implementation of object creation by name achieves the same resiliencyas does decentralized name mapping; that is, it is ABMA-resilient in the absence of global-level failures. It is easy to see why: the operation can be performed using basically the sameprotocol as name mapping. The only di�erence is that the covering object manager, inplace of responding \failure: name unbound" to the client's request, creates the requestedobject, binds the given name to it, and returns a success indication. (If the name is alreadybound, of course, the covering manager responds \failure: name bound.")A similar result holds for a special case of name unbinding|object deletion by namefrom a local directory. Here again, contact with the object's manager is necessary andsu�cient to carry out the operation.4.5.3 Coverage TransferFor the general case of name binding, a decentralized implementation may have to transfercoverage of the given name from one object manager to another. How that is done, andwhat resiliency is achieved, are sketched below.The general case of decentralized name binding is carried out in two steps: acquiringexclusive coverage followed by locally creating the binding. Suppose a client host H istrying to bind a name n to an object On managed by M(On). H sends its name bindingrequest toM(On), which takes responsibility for carrying out both steps. (This conventionmakes sense because the second step would requires communication with M(On) in anycase.) M(On) requests exclusive coverage from whatever entity currently holds coverage,9Another alternative, not considered here, is to sacri�ce all-reliability in favor of greater write resiliency.For example, the available copies replication technique [22] allows a write operation to return success aftermodifying all copies that can be contacted. Holders of copies that fall out of touch with the rest eventuallynotice the trouble and discard their data; in the meantime, however, they can return out-of-date results toread requests.10In UNIX, for example, the creat() system call is a creation by name operation|it takes a �le nameas its argument and creates a �le by that name, stored on the same disk partition as other �les in the samedirectory.



50 CHAPTER 4. FAULT TOLERANCElocating it using basically the same protocol as for binding check, and receives a replystating exactly what coverage was granted. If n is currently bound, the coverage request isrefused. Otherwise, there are three cases: (1) If n is currently covered by the global direc-tory service, its �rst component n1 is added to the (possibly replicated) global directory,and M(On) is given coverage of all names of the form d=n1. (2) Similarly, if n is currentlycovered by the name list for a regional directory d, its �rst component n1 is added to thename list, andM(On) is given coverage of all names of the form d=n1. (3) If n is currentlycovered in a local directory d, the local directory must be converted to regional before therequest can succeed; if its manager is not willing to allow the conversion, it refuses therequest.Some care must be taken to transfer and maintain coverage reliably, to avoid havingsome names covered inconsistently or not covered at all. For example, each manager mustrecord its coverage in stable storage, so that if the manager crashes, its coverage is notlost when it comes back up. One must also take care that only one instance of a givenmanager comes up and tries to use the recorded coverage.11 Finally, one must take carethat coverage transfer is performed atomically|that coverage is not lost or duplicatedif network failures occur while a transfer is being carried out. The familiar three-wayhandshake su�ces for this purpose: If host A is trying to obtain coverage from B, it �rstsends a request to B. If B decides to grant the request, it records that fact in stablestorage and sends a \success" response to A. A then acknowledges the response, allowingB to delete its record of the transfer. If faults interrupt the handshake at any point, Aand B retain enough information to abort the transfer or complete it later.The resiliency achieved by coverage transfer is as follows. If a client host H is trying tobind a name n to an object On managed byM(On), the operation fails if there is an accessfault on M(On) or a global directory service failure that prevents H from contacting it,or (in case 1) a write failure in the global directory service, (in case 2) an access fault onany copy of the required name list (assuming read-any/write-all replication), or (in case3) access to the manager of the local directory d.The general case of name unbinding is quite similar to that of name binding. In thiscase, coverage transfer may be necessary to maintain the convention that unbound namesin a regional directory are covered by the name list. For example, suppose managerA bindsthe name [edu/stanford/dsg/user/jones to a local directory, and the parent directoryuser is regional. If A is then asked to delete the local directory, it must also remove jonesfrom the name list for user. The reliability and resiliency properties of releasing coveragein this way are similar to those of acquiring coverage.4.6 Replicating Global DirectoriesThe global directory service represents a possible point of failure for most decentralizednaming operations, so it is important to make it resilient. One way of doing so is toreplicate the global directories. This section briey examines the resiliency impact of suchreplication on the naming system as a whole.Replicating global directories improves the resiliency of most naming operations. Inparticular, we have seen that the failure set for (non-nearby) name mapping is the greatestlower bound of (1) a manager access fault and (2) the failure set for a read on the globaldirectory service. Assuming that the global directory service is structured so that anysingle copy of a given directory constitutes a read quorum, increasing the number of copiesimproves the resiliency of reads on that directory. For example, suppose that client host H11For this reason, most object managers in the V naming implementation re-request coverage for each oftheir names during their initialization phase, as a \sanity check." If there is no duplication of coverage, noresponse is received.



4.7. CHAPTER SUMMARY 51is trying to map the name [edu/stanford/dsg/V/source/lib/naming/cache.c, that thedirectory types are as shown in Table 4.1 below, and that the named object's manager is notnearby to H. By inspection, the failure set for this name is f fDSG2g; fB;Dg; fA;B;Cg g.Increasing the number of copies of either [ or edu would improve the mapping resiliencyfor this name.[ Global, replicas at servers A, B, Cedu Global, replicas at servers B, Dstanford Regional, participants throughout Stanforddsg Regional, participants in Computer Science buildingV Regional, with DSG �le servers 1 and 2 participatinglib and below Local, at DSG �le server 2Table 4.1: Directory Types Along a Sample PathnameThe impact of replication on most other naming operations is similar to its e�ect onmapping, because most operations can require reading global directories, but do not needto modify them.There is one negative e�ect of replication: increasing the replication level of a globaldirectory reduces the resiliency (and e�ciency) of name binding in that directory. That is,in the above example, adding a new directory [edu/berkeley would become more costlyand less likely to succeed if the number of copies of edu were increased. This di�cultyarises because name binding in a global directory requires access to a write quorum for thereplicated information, and since any single directory replica constitutes a read quorum, awrite quorum must include every replica|potentially a large number.12Updates to global directories are expected to be infrequent, however, so it may beacceptable to improve their resiliency by performing them non-atomically. That is, anyserver holding a copy of the directory will accept an update request, carry it out locally,and return success, then take responsibility for propagating the update to the other copies.While an update is propagating, clients may see either the old or new state, nondetermin-istically. If no permanent faults occur, every update eventually reaches all directory copies.Conicting updates are possible, but occur rarely and are eventually detected. Protocolsof this nature have been developed and used with some measure of success in Grapevine,Clearinghouse, and the Lampson naming design.4.7 Chapter SummaryThis chapter has evaluated the fault tolerance of decentralized naming, showing in particu-lar that decentralized name mapping approaches ABMA-resiliency (which is the optimum)as the global directory mechanism is made more resilient, and achieves ABMA-resiliencyfor nearby objects.Binding check and directory listing can in principle be made arbitrarily resilient, butit is costly to do so. Decentralized naming makes each slightly more resilient than namemapping.Name binding cannot in general be made ABMA-resilient, but decentralized namebinding has the same resiliency as name mapping in a common case (object creation byname), and provides a reasonable level of resiliency in the general case.12Even using available-copies replication, one must enforce a lower bound on the number of copies written(typically half) to prevent multiple conicting updates from being accepted during periods when the networkis partitioned.



52 CHAPTER 4. FAULT TOLERANCEThe resiliency of name mapping (and most other operations) can be improved by keep-ing more replicas of each global directory; however, doing so makes name binding in thosedirectories less e�cient and (unless non-atomic updates are allowed) less resilient.



Chapter 5SecurityThis chapter discusses how to adapt decentralized naming to function in an environmentwhere the hosts do not all trust one another. The major question to be answered is, whena client host multicasts a request for naming information, how does it know which repliesto believe? I assume that the system has some well-de�ned security policy that speci�eswhich managers are authorized to respond to queries about any given name. A responsefrom an unauthorized manager is termed a counterfeit. A counterfeit-secure naming systemis one that includes a reliable mechanism for preventing counterfeit responses from beingaccepted as valid. The counterfeit problem is the problem of providing such a mechanism.The primary results of this chapter are (1) a solution to the counterfeit problem indecentralized naming systems, and (2) an evaluation of the cost of this solution, in termsof its impact on the e�ciency and fault tolerance of naming. I also argue that no solutionwith signi�cantly lower cost is likely to exist.The next section explains how this chapter is related to existing work in security,while the following section gives the security model to be used. Sections 5.3 presents atechnique for detecting and rejecting counterfeits. Its cost is evaluated in Section 5.4,and Section 5.5 considers whether better solutions are possible. Section 5.6 discusses afew additional security issues that arise in decentralized naming systems, and Section 5.7summarizes the chapter.5.1 Mandatory and Discretionary SecurityCounterfeit rejection is a problem in discretionary security, not mandatory security. Inthis section I briey discuss how mandatory security can be provided in a distributedsystem, then discuss the relationship between counterfeit rejection and other problems indiscretionary security.Mandatory security models typically de�ne a lattice of security levels, assign a securitylevel to each process or information container in the system under consideration, andrequire the system to prevent information ow from A to B unless either level(A) �level(B), or A is a trusted subject|a process that can be relied upon to \sanitize" theinformation it passes to B by eliminating material that B is not cleared to possess [1,28].For example, a process at the con�dential level must not be allowed to read a secret �le,or (if it is not a trusted subject) to write an unclassi�ed �le.1It is certainly possible to enforce mandatory security in a distributed system. A simple(but draconian) technique is to require that all hosts in the system operate exclusively at1These examples correspond respectively to the simple security property and *-property of Bell andLaPadula [1]. 53



54 CHAPTER 5. SECURITYa single security level. It is also possible to enforce security in a multi-level system byproviding each host with a security kernel that regulates all access to the network. Thekernels can prevent impermissible information ow by tagging each outgoing message withits security level and refusing to deliver an incoming message to a process at a lower levelthan the message. (In fact, in a multi-level system, it is necessary to regulate networkaccess to enforce mandatory security. If a process P below the highest security level hasunrestricted read access to the network, it is impossible to ensure that it does not readinformation it is not cleared for: even if the kernels force all information above the lowestlevel to be encrypted, a malicious process P 0 could transmit information to P using anyof a number of covert channels; for example, modulating the length of its messages.)In view of these facts, the remainder of this chapter discusses only the counterfeitproblem, an aspect of discretionary security. For simplicity, the discussion is phrasedin terms of a single-level system in which all processes have unrestricted access to thenetwork, with each client process responsible for counterfeit checking on responses to itsown requests. However, the results can be applied directly to a multi-level system in whichthe security kernel does not implement discretionary security. It would also be feasible toimplement the counterfeit rejection mechanism within a security kernel.Discretionary security mechanisms give their users the ability to place further restric-tions on the dissemination of information they possess, beyond those imposed by manda-tory security. For example, a user may want to keep certain of his �les private, even fromother users with the same security clearance. Discretionary security models commonlyformalize the notion of \user" under the term principal [38]. Each process in the systemis associated with a principal, corresponding to the person or organization that takes re-sponsibility for its actions and from whom it derives its authorization. An access matrixrecords the system's detailed security policy; its rows corresponds to objects, its columnsto principals, and each entry gives the list of operations that the corresponding principalis authorized to perform on the corresponding object.One important problem in implementing discretionary security is how to do authenti-cation|how to determine whether a client process is entitled to be treated as the principalit claims to be. Centralized operating systems typically provide a simple user login proce-dure for authentication. In distributed systems, authentication is somewhat more complex,but known cryptographic protocols can be used to authenticate clients to servers across anetwork [43].An equally important (but less well studied) problem in discretionary security is authen-ticating the system to the user; the counterfeit problem considered in this chapter is oneaspect of it. When a user logs into a single-machine operating system, he needs some assur-ance that he is communicating with the real system, not an imposter that might violate thesecurity policy; i.e., the system must authenticate itself to him. A more complex version ofthe same problem arises in large distributed systems: when a client requests an operationon some object, it needs some assurance that it is communicating with the object's truemanager, not an imposter. Because large systems include object managers that representmany di�erent, mutually distrustful principals (di�erent companies, departments, etc.),one must assume that the legitimate manager of one object may act as an imposter ifqueried about other objects, falsely claiming to be their manager as well. When clients usedecentralized name mapping to �nd object managers, authenticating the managers thatrespond requires a solution to the counterfeit problem. For example, if DEC employeeSmith attempts to open and write into a private �le [com/dec/wrl/user/smith/secretson a DEC �le server, but another �le server operated by IBM sends out a counterfeitresponse to its the name mapping request and captures the data, Smith's discretionarysecurity has been breached.The next section de�nes the counterfeit problem more precisely, while subsequent sec-tions present and evaluate a solution.



5.2. COUNTERFEIT SECURITY MODEL 555.2 Counterfeit Security ModelA security policy divides possible events within a system into two classes, allowed anddisallowed. The occurrence of a disallowed event is termed a security violation. A secu-rity model is a formal or semi-formal framework for describing particular security policies.This section presents a security model tailored to solving the counterfeit problem in de-centralized hierarchical naming systems. The policies described by the model de�ne whata counterfeit name response is, and require that whenever such a response is generated,any client that receives has enough information to detect that it is counterfeit and rejectit.5.2.1 De�nitionThis section begins by de�ning a general model gen suitable for any naming system, thenparticularizes the model to decentralized hierarchical naming.For each name n in the global name space, each principal P is authorized to make zeroor more assertions about n's binding status. A naming authorization function describeswhat assertions are permitted; it is a time-varying function that gives, for each principal/name pair (P; n), the set of assertions P is authorized to make about n. The detailedsecurity policy of each system modeled by gen de�nes what statements are consideredto be \assertions about n" for each n. Making an assertion means presenting it (as thetruth) in a message to some other principal; an unauthorized assertion made in this wayis said to be counterfeit. Authorization functions have the following closure property: ifan assertion a is implied by other assertions P is authorized to make, then P is authorizedto make the assertion a as well. For example, if P is authorized to assert that n is boundto a directory, it is authorized to assert that n is bound.The security policies modeled by gen disallow clients from accepting counterfeit asser-tions.2 The policies do not disallow the sending of counterfeit assertions, because underour assumption that all processes have unrestricted network access, there is no way toconstruct a mechanism to enforce policies that make such restrictions. A counterfeit-secure system implementation is one that includes a reliable mechanism in clients forrejecting counterfeits; informally, the counterfeit problem is the problem of providing sucha mechanism in a way that does not prevent the system from performing its function.3The authorization function itself is stored by principals called security agents, one ofwhich is designated the security chief. A gen security policy allows the chief to statethe value of the authorization function for any arguments, or to delegate portions of itsauthority to other security agents, allowing them to state the function's value for certainsets of arguments designated by the chief. Security agents are included in the model toreect the fact that the detailed security policy of a real system can change, and thatsuch changes must be communicated from the principals that make them to the principalsthat are a�ected by them. Agents are simply principals that have authority to change theauthorization function; the model does not dictate their implementation, which can itselfbe distributed.This completes the de�nition of gen. We turn now to hier, a more speci�c modelwithin the class gen, tailored speci�cally for decentralized hierarchical naming.The model hier begins by assuming the global name space is hierarchical; that is, it isstructured as a rooted tree, and global names are pathnames|they describe a path throughthe tree beginning at the root. Each non-leaf node of the global tree is a directory, and2A client receiving an assertion in a message may either accept it (i.e., add it to its store of knowledge,act on it as the truth, etc.) or reject it (ignore it, consider it possibly false).3In particular, it is not acceptable to implement counterfeit security by rejecting every incoming message!



56 CHAPTER 5. SECURITYa directory listing operation is provided that enumerates the branches extending outwardfrom a directory.The naming authorization function grants or denies permission to make assertions ofthe following forms about each name n:1. An assertion that n is bound, optionally stating what it is bound to.2. An assertion that n is unbound.3. An assertion that n is bound to a directory, optionally giving a (partial or full)directory listing.4. Any assertion restricting what managers may hold a binding for n. (For example, anassertion that some pre�x of n is bound to a directory with a speci�ed participantgroup address.)For simplicity, hier restricts the range of the authorization function to three values:strongly authorized, weakly authorized, or unauthorized.A principal P that is strongly authorized for a name n is authorized to make any ofthe four types of assertion about n listed above, including giving a full listing if n is boundto a directory. Further, P is strongly authorized for every name with n as pre�x, and isat least weakly authorized for every pre�x of n.A principal P that is weakly (and not strongly) authorized for a name n has thefollowing more restricted permissions. First, P is authorized to state that n is bound to adirectory, but not authorized to state that it is not bound (or is not bound to a directory).Next, P is authorized to give a partial listing of the directory bound to n, restricted asfollows:� P may state that a name component c is in the directory, if and only if it is alsoauthorized for n=c (either strongly or weakly).� P may state that a name component c is not in the directory, if and only if P is alsostrongly authorized for n=c.Finally, P is weakly authorized for every pre�x of n.A principal P that is unauthorized for a name n is not permitted to make any assertionsabout it.Unless otherwise noted, hier is used as the security model throughout the rest of thischapter.5.2.2 Why This Model?hier is a fairly simple model, but is exible enough for our purposes. It allows the securityagents to specify which principals are authorized to respond to which names, by dividingthe name space into subtrees, each of which is strongly authorized to a di�erent set ofprincipals. For example, a principal P1 could be strongly authorized for names with thepre�x [a/b but unauthorized for [a/c, while another principal P2 is strongly authorizedfor [a/c but unauthorized for [a/b. As a result of this assignment, both principals acquireweak authorization for [ and [a, but as a practical matter, weak authorization does notgrant enough power to allow them to do any harm.It might seem attractive to simplify hier by eliminating weak authorization; such amodel is, unfortunately, inadequate. Let simp be a model that restricts the range of thenaming authorization function to two values: authorized or unauthorized. A principalthat is authorized for a name n has permission to make any of the assertions about nenumerated above. A principal that is unauthorized for n does not have permission tomake any assertions about n. It is shown below that this model is inadequate, because



5.2. COUNTERFEIT SECURITY MODEL 57it would require each principal that is authorized for any name to be authorized for allnames.The reader who is not interested in the proof that simp is inadequate may wish to skipto the next section at this point.Lemma 5.1. Under the simp model, authorization for a pre�x of any given name impliesauthorization for the entire name.Proof: First, note that in a hierarchical naming system, asserting that a name n is notbound (or is not bound to a directory) also implies that no name of the form n=m is bound.Now suppose that principal P is authorized for a particular name n but not for n=m. SoP is authorized to assert that n is unbound, and because this statement implies that n=mis unbound, by the closure property of authorization functions P is also authorized toassert that n=m is unbound. But by assumption, P is unauthorized for n=m, so it is notauthorized to assert that n=m is unbound. Contradiction. Therefore if P is authorized forn, it must also be authorized for all names of the form n=m.Lemma 5.2. Under the simp model, authorization for a name implies authorization forevery pre�x of that name.Proof: First, note that in a hierarchical naming system, asserting that a name of the formn=m is bound also implies that n is bound (to a directory). Now suppose that principalP is authorized for a particular name n=m, but not for n. So P is authorized to assertthat n=m is bound, and because this statement implies that n is bound, by the closureproperty of authorization functions P is also authorized to assert that n is bound. Butby assumption, P is unauthorized for n, so it is not authorized to assert that n is bound.Contradiction. Therefore if P is authorized for any name of the form n=m, it must alsobe authorized for n.Theorem 5.3. Under the simp model, authorization for any name implies authorizationfor every name.Proof: In the above lemmas, substitute the root of the naming hierarchy for n. NowLemma 5.2 implies that every principal that is authorized for any absolute name is autho-rized for the root, while Lemma 5.1 implies that every principal that is authorized for theroot is authorized for every absolute name. Therefore a principal that is authorized for atleast one name is authorized for every name.It is possible to work around this problem with simp, by statically de�ning certaindirectories and making them well-known to all clients. Speci�cally, suppose that a givendirectory is statically bound to its name n, and that this binding and the directory'scontents (list of immediate descendants) are known to all clients. In that case it is sen-sible to weaken the closure requirement slightly, allowing a principal P to be authorizedfor assertions that imply things about n even when P is not authorized for n itself, be-cause every client has independent knowledge of n's binding status against which it cancheck such assertions. A directory that is made static in this way can have descendantsthat are authorized to disjoint sets of principals. For example, the root directory [ of acompany-wide system might be statically de�ned to contain only the four entries manage-ment, marketing, production, and development, with the list of principals authorized foreach pre�x well-known to all clients. A �le server S belonging to the marketing departmentcould then be authorized for the [marketing pre�x without requiring authorization for[, [management, etc.; yet S would have no di�culty in mapping the names it binds (e.g.,[marketing/projections), even when no other servers are up. That is, fSg appears tobe a read quorum for [marketing/projections.44Strictly speaking, fSg is not a read quorum, because some of the client's local knowledge is taken intoaccount in mapping the name. The read quorums are actually sets of the form fc; Sg, where c is a client.



58 CHAPTER 5. SECURITYThis solution is simple, and may be adequate for some applications, but is ratherinexible. It amounts to giving every client a complete copy of the naming authorizationfunction, which is practical only if the function has a compact representation (few staticdirectories) and does not change while the system is running. Therefore, the remainder ofthis chapter uses the more exible model hier, for which Theorem 5.3 does not hold andwhich therefore does not force any directories to be statically de�ned.55.3 CapabilitiesThis section describes a solution to the counterfeit problem using capabilities. Conceptu-ally, a capability K is a document stating that \principal p(K) is authorized to performaction a(K) until time t(K)," signed by some principal s(K), where s(K) is authorized toissue capabilities for a(K). Under the gen model, s(K) would be a security agent. When-ever p(K) is claiming the right to perform action a(K), it simply presents the capability,plus its own signature to verify that it is authorized to use the capability.When capabilities are provided, a client does not have to maintain any knowledge ofthe global security policy. Instead, it simply rejects any assertion that is not accompaniedby a capability to validate it.To use capabilities, all participating principals must agree on how to identify principalsand verify their signatures, which principals are authorized to sign capabilities, and thelanguage in which capabilities are written. These three points are discussed in the followingthree subsections.5.3.1 Principal Identi�ers and SignaturesWhen considering a solution to the counterfeit naming problem that involves rejectingsome messages based on which principal sent them, one must take care to avoid circularreasoning, because principals themselves are known by names. A principal that claimsits name is P is itself making an assertion that could be counterfeit. Thus it might seemthat a counterfeit-secure principal naming service is required before one can implementa counterfeit-secure decentralized naming service, thereby requiring a centralized namingservice (such as a key distribution center) at the lowest level to avoid an in�nite regress ofdecentralized naming services.Fortunately, however, there is a way around this problem. Suppose we have a public-key encryption system [17] that also provides digital signatures (for example, RSA [35]).We can then identify each principal by its public key. That is, a principal's public keyis considered to be the lowest-level name for that principal, its principal identi�er.6 Notrusted name service or key distribution center is needed to authenticate the sender of adigitally signed message as being a particular principal referred to by its identi�er, because,given only the signed message and the public key, one can verify with high probabilitythat only the holder of the corresponding private key could have sent that message. (Andconveniently, the principal identi�er is also a key that can be used to send private messagesor conversation keys to the principal it identi�es.)5Arguments similar to those in Lemmas 5.1 and 5.2 do apply to this model, but rather than revealingproblems with it, they simply establish its inheritance properties (for pre�xes and su�xes of names authorizedto a given principal) as theorems.6Chaum terms a public key used in this way a digital pseudonym [6]. He advocates this approach as away of allowing people to provide credentials to computer systems without giving up their privacy; it allowsa person to store his credentials under one or many pseudonyms that have no visible connection with oneanother or with his real name.



5.3. CAPABILITIES 59In more detail, the approach works as follows. Each principal randomly chooses (or isassigned) a public key that de�nes a unique encryption function Ep, and a matching secretkey that de�nes a decryption function Dp.7 For convenience, assume that Ep(Dp(x)) = xas well as Dp(Ep(x)) = x for all messages x, and that the cipher is equally strong whenthe roles of the encryption and decryption functions are exchanged in this way. Now amessage x for principal Ep is sent privately by �rst encrypting it with Ep, while a messagefrom principal Ep is digitally signed by encrypting it with Dp. We then de�ne the principalidenti�er Ep to be bound to that entity (or set of entities) that possess Dp.As a sidelight, this mechanism leads to a simple, operational de�nition of principal:any entity that can generate a key pair and hold the decryption key secret can act as aprincipal, and by extension, so can any set of entities that can distribute a decryptionkey among themselves and prevent it from leaking further. For example, a person witha pocket calculator can be a principal, and so can a single computer system, or a singleprocess within a computer system (assuming in the latter case that the operating systemcan be trusted not to steal the process's secret key). A group of people or processes canact as a single principal if they have some su�ciently secure way to distribute the initialsecret Dp among themselves.5.3.2 Authority to Sign CapabilitiesThe simplest way of regulating the authority to issue capabilities is to view the systemsecurity chief as a single principal with a well-known principal identi�er Echief, and agreethat any capability signed by the chief is valid. Under this approach, a client can beginsecure operation knowing only the capability language, the cryptosystem, and one publickey, Echief. It is, of course, undesirable for Dchief to be widely known, because it is in e�ecta master key to the entire naming system.One can avoid the need to have a process on line that knows Dchief by introducingdelegation. A delegation capability Kd, issued to a principal p(Kd), states that p(Kd) isauthorized to sign capabilities for the rights a(Kd), or any subset of those rights. Capabil-ities for such rights, signed by p(Kd), are then accepted if accompanied by the delegationcapabilityKd. Given this mechanism, the security chief P0 can delegate subsets of its rightsto security agents P1, P2, etc., by creating delegation capabilities for them. Thereafter,P0 need not be available on line until a delegation capability expires, or some authority isneeded that P0 has not delegated.This mechanism minimizes the amount of knowledge a client needs to begin secureoperation, but may not �t the higher-level policies of some organizations. For example,an organization with a committee at the highest level might �nd it more appropriate torequire the signatures of several principals on top-level capabilities instead of appointinga single chief. This and other extensions to the capability mechanism can be implementedas part of the initial agreement on what principals are authorized to issue capabilities, oras part of the capability language.5.3.3 Capability LanguageA simple capability language is su�cient to implement the naming security model hier.The a(K) portion of each capability includes a single name, for which the capability grantsstrong authorization. p(K) is the principal identi�er of the principal to which the capabilitygrants rights. The t(K) portion is given in some agreed-upon time units|say, milliseconds7Random choice should give an acceptably high probability of uniqueness, because principal P choosingthe same key pair as principal Q amounts to P guessing how to decrypt the messages sent by Q, and astrong system must make the latter event extremely unlikely.



60 CHAPTER 5. SECURITYsince the beginning of 1970, gmt. The triple (p(K); a(K); t(K)) is signed by s(K), theprincipal granting the capability, and s(K)'s principal identi�er is appended to the resultto yield the complete capability.Note that, in accordance with the de�nitions of strong and weak authorization, acapability for name n implies strong authorization for any name of which n is a pre�x,and (at least) weak authorization for any pre�x of n. There is no real need for capabilitiesthat grant weak authorization directly, because as noted above, managers are generallygranted weak authorization for a name n only as a byproduct of having been grantedstrong authorization for some name n=m of which n is a pre�x. A manager that needs toprove it has weak authorization for n can use its capability for n=m to do so.The action �eld a(K) of a delegation capability includes a delegation bit, indicating thatp(K) is permitted to delegate the authority granted by K to other principals. Delegationworks as follows: an unexpired capability L with s(L) = p(K) 6= Echief is accepted as validif accompanied by a valid capability K, where a(K) has the delegation bit set and a(L)is a right implied by a(K). That is, a(K) may grant authorization for the same name asa(L), or some pre�x, and a(L) itself may or may not have the delegation bit set.5.3.4 Application to Decentralized NamingThis capability scheme is powerful enough to provide reliable counterfeit security in adecentralized naming system. In an installation that uses it, every naming response issigned with the principal identi�er of the responding object manager, and clients rejectany response that does not include valid capabilities su�cient to establish the signer'sright to make the naming assertions in the response. In particular, the cache informationreturned in response to a multicast name mapping request on a name n contains not just aclaim that a particular manager (or manager group) implements all names with a certainpre�x, but also a capability K (or set of capabilities) demonstrating the responder's rightto make that claim. The client caching such a response would also cache knowledge ofthe expiration time t(K), and consider the cache entry invalid after that time. The exactnature of K depends on whether n is bound to a local, regional, or global directory.If n is bound to a local directory, its manager provides a strong-authorization capabilityfor n or some pre�x of n to justify its claim to be n's manager.If n is bound to a regional directory, on the other hand, a responding participant Mthat does not have strong authorization for n includes a special participant-address capa-bility along with the cache information in its response. A participant-address capabilityfor n grantsM the right to state that n's participant group address has a particular valueGn. Such a capability can be signed by any principal with strong authorization for n; thecapability type and the value Gn appear in the a(K) �eld. Participant-address capabili-ties are needed because weak authorization alone is not su�cient to permit M to returnn's participant group address|giving the address implicitly asserts a restriction on whatmanagers can implement names within the directory n (only members of the group), anassertion that only managers with strong authorization for n are permitted to make.8Finally, if n is bound to a global directory, the directory server that responds to therequest returns a capability demonstrating strong authorization for n. (To allow it tohandle directory listing requests, a directory server is given strong authorization for eachglobal directory it participates in.)8If hier were to permit managers with weak authorization to make such assertions, a manager with weakauthorization for [a but no authorization for [a/b could interfere with attempts to map the name [a/b bygiving out a false participant group address|one bound to a group not including the manager of [a/b.



5.4. THE COST OF CAPABILITIES 615.4 The Cost of CapabilitiesCapability-based security does not come for free. The following two subsections evaluateits cost|that is, its impact on the e�ciency and fault tolerance of name mapping.5.4.1 Impact on E�ciencyThere are two kinds of e�ciency costs to be considered: the additional messages neededto obtain new capabilities after old ones have expired, and the additional time needed toprocess ordinary messages that contain capabilities.Additional MessagesRoughly speaking, the number of capability request messages generated per unit time isinversely proportional to the average time a capability is valid. This relationship is mademore precise below.We begin by deriving the average arrival rate of requests for new copies of a givencapability. Let v(K) be the total validity time for capability K; that is, if i(K) is the timewhen K was issued, v(K) = t(K) � i(K). Assume that the generation of client requestsfor action a(K) is a Poisson process, with an average of �a(K) requests per second. Assumealso that a capability K is only requested and passed on to clients through the managerthat performs the actions it authorizes, and that the manager only requests a new copy ofK when a request for action a(K) arrives after all previously issued capabilities for a(K)have expired. Then, whenever a capability K is issued, there will be no further requests inthe subsequent v(K) seconds; after that, the next request is expected after an additional1=�a(K) seconds. Thus requests for capability K arrive, on average, every v(K) + 1=�a(K)seconds, so their average arrival rate is (v(K) + 1=�a(K))�1 requests per second.Now we can write an expression for the total system load imposed by issuing capabil-ities, that is, for the overall arrival rate �cap of requests for new capabilities. Let the setof all outstanding capabilities be fK1;K2; . . . ;Kkg, of size k. Then �cap is the sum of thecontributions by each capability, that is,�cap =Xi [v(Ki) + 1=�a(Ki)]�1 (5:1)We can draw two conclusions from this formula.First, as remarked above, the cost imposed by issuing capabilities varies inversely withtheir validity times|so long as the validity times are long enough to dominate the expectedinter-usage times. Globally, �cap ! 0 as mini v(Ki)!1. In fact, if v(Ki)� 1=�a(Ki) forall i, and all the v(Ki)'s are multiplied by a factor �, �cap is inversely proportional to �. Itis reasonable to suppose that v(Ki) is chosen large enough that v(Ki)� 1=�a(Ki), at leastfor most i, because otherwise a large fraction of the requests for action a(Ki) would resultin a request for a new capability.Figure 5.1 illustrates how �cap decreases as the validity time of capabilities increases.Each curve assumes a constant number k of capabilities in the system, each with thesame request arrival rate �K. The validity time v(K) (also assumed the same for eachcapability) is plotted on the x-axis, and the system load �cap on the y-axis. Both axes arelogarithmic. It is evident that, once v(K) is made large enough, as it continues to increase,�cap decreases in inverse proportion|that is, the graph approximates a straight line.



62 CHAPTER 5. SECURITY
-3 -2 -1 0 1 2

k=10000, alpha(K)=10

k=1000, alpha(K)=100

k=100, alpha(K)=1000

Validity time v(K) in seconds

5

4

3

2

1

0

second

per

issued

Capabilities

-4

10

10

10

10

10

10

10 10 10 10 10 10 10Figure 5.1: System Load vs. Capability LifetimeNext, note that as the number of capabilities in the system is increased, we mustincrease their validity times proportionately if we wish to avoid increasing the overallload �cap. To see this, assume an existing capability K expires and is reissued as twocapabilities K1 and K2, with the set of actions authorized by K split between the two:a(K1) [ a(K2) = a(K) and a(K1) \ a(K2) = ;. Then the arrival rate �a(K) is also splitbetween the two: �a(K1) + �a(K2) = �a(K). How should v(K1) and v(K2) be chosen? Ifv(K1) = v(K2) = v(K) > 0, the total system load �cap is increased by the split|in theworst case, if v � 1=� for both the new capabilities, each one individually contributesthe same cost as the old one did, doubling the total. One can, however, prevent thecost from increasing by choosing the new v's larger than the old one; in fact, choosingv(K1) = v(K2) = 2v(K) is always su�cient. That is, it is always the case that1v(K) + 1=�a(K) � 12v(K) + 1=�a(K1) + 12v(K) + 1=�a(K2) (5:2)The proof of this statement is straightforwardbut tedious. By taking derivatives, one showsthe right-hand side of Equation 5.2 achieves its maximum when �a(K1) = �a(K2) = �a(K)=2,in which case equality holds.Per-message OverheadCapability-based counterfeit security also imposes a per-message time and space overheadon the naming system. Some time is required to run the public-key encryption and decryp-tion algorithms on messages, and messages are made longer by the inclusion of capabilitiesand principal identi�ers. This section estimates the overhead quantitatively, assumingthe RSA [35] cryptosystem is used. The cost appears small enough to be acceptable inapplications where counterfeit security is needed.Based on the assumptions in Table 5.1, capabilities can range up to about 320 byteslong. Principal identi�ers are assumed to be 80 bytes because this length (equivalent toabout 200 decimal digits) is typical of RSA keys. Six-byte time values give millisecondresolution across a range of several thousand years. The a(K) �eld includes the pathname



5.4. THE COST OF CAPABILITIES 63Field Description Lengtha(K) Name Varies, typically � 64 bytesp(K) Principal granted to 80 bytest(K) Expiration time 6 bytess(K) Principal granted by 80 bytesTable 5.1: Capability Field Lengthspre�x covered by the capability, the delegation bit, and for participant-address capabilities,a participant group address and directory identi�er (which total 8 bytes in the V imple-mentation). The a(K), p(K), and t(K) �elds are encrypted using s(K), making aboutthree 80-byte blocks, and the 80-byte identi�er s(K) is transmitted in the clear, for a totalof 320 bytes.In total, most name responses are lengthened by less than 750 bytes. This �gure as-sumes that most capabilities are issued by direct delegates of the security chief, so that aresponse typically includes two capabilities, K1 authorizing the response, and K2 autho-rizing the signature s(K1) of K1. The response must also include the 80-byte principalidenti�er of the responder (which signs the response by encrypting the remainder of it),and a 6-byte timestamp copied from the request,9 for a total of 726 bytes. In the current Vnaming implementation, a QueryName response is short (less than 100 bytes on the Ether-net), so even if it were increased by 750 bytes, it would still �t in a single Ethernet packet(up to 1500 bytes).The time cost to generate or check a capability is substantial, but not intolerable.Encryption and decryption in RSA are slow; the original paper on RSA estimated itwould take \a few seconds" to encrypt or decrypt a 200-digit (80-byte) block on a general-purpose machine, and prototype hardware constructed by Rivest ran at only six kilobitsper second with 100-digit blocks [16]. Although public-key systems that run faster thanRSA are under development, nothing substantially better is available yet. Fortunately,capabilities do not need to be generated or checked frequently; once a client C has seena capability authorizing M for a particular part of the name space until time t, C neednot receive additional capabilities from M until t expires, as long as it is con�dent theresponses it is receiving are from M . Such con�dence can be maintained by using aconventional cryptosystem to communicate after the initial capability-checking step, usinga conversation key supplied by M along with its capability.In conclusion, although the use of capabilities does increase the average time and spacecost of name responses, this overhead appears small enough to be acceptable in applicationswhere counterfeit security is needed.5.4.2 Impact on Fault ToleranceThe additional messages required by capability-based counterfeit security do not onlyreduce a naming system's e�ciency; they also reduce its fault tolerance. Only resiliencyis a�ected, not reliability. Failure to receive a requested capability can stop names frombeing mapped, by making it impossible for their manager to demonstrate its authorizationto map them. Such failures can occur either due to failure of a security agent, or due to lostmessages on the network. This section quanti�es the impact of capability-based securityon resiliency, then examines some ways in which increased resiliency can be obtained atthe cost of reduced e�ciency.9The timestamp is used to match responses with requests, preventing responses from being recorded andreplayed.



64 CHAPTER 5. SECURITYUnder the assumptions of the previous section, the use of capabilities has a severeimpact on resiliency: any fault that prevents a capability from being delivered also preventsa request from being satis�ed. This is true because a manager never requests a newcapability until it is immediately needed to satisfy a request. As �cap increases, the fractionof all requests that are vulnerable to this sort of fault increases with it. If �name is theoverall system arrival rate of naming requests, the ratio rvul of vulnerable requests to totalrequests is �cap=�name.Note that if faults occur, �cap will be higher than was calculated above; that is, e�ciencyis reduced as well. Whenever a capability K is requested but not acquired due to a fault,the next request that requires K will trigger another request for K. Assuming the faultsare independent and occur with probability pfault on each capability request, the long-terme�ect on �cap is as though v(K) were replaced by (1� pfault)v(K) in formula 5.1; that is,�cap =Xi [(1 � pfault)v(Ki) + 1=�a(Ki)]�1 (5:3)One can make a capability-based secure naming system more resilient (in the sense oflowering the fault-vulnerable ratio rvul), at the cost of poorer e�ciency. One techniqueis to have each manager request a new copy of each of its capabilities K at some timet0(K) < t(K), that is, before its old copy expires. If each manager does this, a fault onany single capability request is tolerated, because the old capability is still valid for atime. After such a fault, the next client request that comes in after the old capability hasexpired will trigger a new capability request, which should succeed or fail independentlyof the previous failure.10 Using this technique, however, makes �cap independent of thearrival rate of client requests, because a new capability is requested regardless of whetherthe client needs it or not. So, de�ning v0(K) such that v(K) � v0(K) = t(K) � t0(K),Equation 5.3 becomes �cap =Xi [(1 � pfault)v0(Ki)]�1 (5:4)Thus if there are many capabilities that are infrequently used compared to their validitytimes, this technique increases �cap substantially.A compromise approach is to make a capability K eligible to be re-requested at timet0(K), but to defer actually doing so until the next client request arrives. With this arrange-ment, nearly any single fault can be tolerated for frequently-used capabilities, because anew client request will nearly always arrive between times t0(K) and t(K) if t0(K) is chosento be su�ciently early. But the e�ciency penalty for infrequently-used capabilities is notas large, because the arrival rate of client requests does not drop out of the formula for�cap; in this case, �cap =Xi [(1� pfault)v0(Ki) + 1=�a(Ki)]�1 (5:5)Thus, if faults are rare, adopting this approach has the same e�ciency impact as reducingthe validity time of each capability K from v(K) to v0(K).5.5 Can We Do Better?This section argues that no solution to the counterfeit problem for decentralized namingcan have signi�cantly lower cost than the capability scheme described above. Speci�cally,10Of course, in practice requests that occur close together in time do not fail independently, so t(K)�t0(K)must be reasonably long compared to the mean time to recovery from a failure of the capability-grantingmechanism.



5.5. CAN WE DO BETTER? 65it shows that the cost tradeo� exhibited by the capability scheme|between how frequentlythe naming authorization function is allowed to change, and how many additional messagesare needed as compared with a non-secure naming system|is a necessary property of anycounterfeit-secure naming system, and argues that, for any given limitation on authoriza-tion changes, the capability scheme comes close to minimizing the number of additionalmessages required.Theorem 5.4. Under the following conditions, reliable counterfeit rejection requires (inthe worst case) that at least one extra message be sent for each name response that isaccepted by any client. Conditions: (1) The gen model of counterfeit security is used. (2)The interconnecting network is subject to omission faults. (3) Neither the client issuing thename request nor any of the managers responding is a security agent. (4) The authorizationfunction can change in any way at any moment; no prior notice need be given to principalsthat are not security agents. (5) Each naming request made by a client is completed (byaccepting a response or rejecting all responses) before that client's next request is issued.(6) There is a time limit ! on how long clients wait for responses before giving up. (7) Aresponse from manager M received at time t2, corresponding to a request issued at timet1, must be rejected as counterfeit unlessM was authorized to give it at some time in theinterval [t1; t2].Proof (informal): Suppose that client C issues a naming request Q at time t1 and acceptsa response R from manager M at time t2. To be sure R is not counterfeit, C must knowthat at some time in the interval [t1; t2], the authorization function permitted M to makethe assertions contained in R; call this fact K. Because C is not a security agent, it cannotknow fact K unless some security agent has asserted K in a message SK (not necessarilysent directly to C); the sending of this message must be a di�erent event from the sendingof R because M is not a security agent. Now in the worst case, SK is only su�cient tovalidate R, not any other name response, because (i) by condition (4), SK need contain noinformation about the authorization function at times later than t, (ii) by condition (5),C's next name request will not be issued until some time t3 > t2 � t, so C cannot use SKto validate another incoming response, and (iii) Q may be the only request received bymanager M between times t1 and t2, so M cannot (in the worst case) use SK to validateanother, later outgoing response|M cannot delay sending a response to Q until it receivesanother request, because it might not receive another request before time t1 + !.Note that, as this theorem suggests, binding storage under gen is no longer decentral-ized in the strict sense. That is, any read quorum for a bound name n must include atleast one security agent, in addition to the manager of the object bound to n. Thus, itis not surprising that the counterfeit-secure version of \decentralized" naming describedabove is less e�cient and less resilient than the non-secure version.In the light of Theorem 5.4, the capability scheme of this chapter can be viewed asa way of reducing the cost of counterfeit-secure naming by limiting the frequency withwhich the authorization function can change. That is, it avoids requiring an extra messagefor every client request by modifying precondition (3) of the theorem. Speci�cally, theissuance of a capability K with expiration time t(K) declares that principal p(K) willcontinue to be authorized for action a(K) at least until time t(K).The capability scheme seems to take the maximum possible advantage of this type oflimitation on changes to the authorization function. For a capability that covers a singlemanagerM , exactly one pair of extra messages is needed each time a request arrives at Mafter the most recent copy of the capability has expired|that is, each time the values of theauthorization function it covers could have changed. One can hardly expect to do betterin this case. For a capability that covers several managers M1;M2; . . . ;Mm, there are mpairs of messages. In this case one might be able to do better in favorable cases, by givingsome managers their capabilities indirectly, piggybacked on other inter-manger message



66 CHAPTER 5. SECURITYtra�c or by way of common clients; however, this technique seems rather impractical, andis not applicable in the worst case, where there are no direct inter-manager messages andno common clients.5.6 Other Security ConsiderationsThere are other security-related problems, beyond that of counterfeit rejection, that usersmight wish to see solved in a \secure" naming system. The following subsections discussthe feasibility of security models that include two of these considerations: privacy forrequests, and consistency among responses.5.6.1 Privacy For Requestsgen does not model policies that require request-privacy. That is, when a client is-sues a naming request, there are no restrictions on which managers can hear the re-quest, only on which responses can be accepted. In some applications, it can makesense to impose such restrictions. For example, even the existence of a document called[gov/whitehouse/user/nixon/enemies/ralph-nader might be considered sensitive in-formation by its owner.This section shows that request privacy can be implemented as cheaply as counterfeitrejection, if one is willing to place certain restrictions on the naming authorization function,but it is more expensive in the general case. (The cost measure here is number of messages.)Consider the security model priv, de�ned like gen, except that it is also a securityviolation if a naming request is received by any principal that is not authorized for thename.11 It is assumed that principals that are authorized to receive a request will notrelay it to unauthorized principals. It is also assumed that eavesdropping is possible onthe network connecting clients and managers, so the only way to ensure that a message isprivate is to encrypt it.In the case where all object managers are considered to act as one principal Psys, it is nomore expensive to implement a policy in the class priv than the corresponding policy ingen. For example, if principal identi�cation is implemented as described in Section 5.3.1above, a client can guarantee its naming requests are private simply by encrypting eachwith Esys before transmitting it. Only a legitimate manager, possessing Dsys, will be ableto decrypt such requests.Also, if the authorization function is static and well-known to all clients, and it autho-rizes each name to no more than one principal, policies in the class priv are again no moreexpensive than the corresponding policies in gen. In this case, whenever a client issuesa naming request specifying a name n that is authorized to principal Pn, it encrypts therequest with En before transmitting it over the network.In the general case, however, where the naming authorization function distinguishesamong managers and is not known in advance by clients, priv is more expensive to im-plement than gen. Under priv, a client cannot multicast its name mapping requests tomany principals and check only the replies against the security policy. It must insteadpre-evaluate which principal(s) are authorized to carry out each naming request it makes,and send the request only to them (i.e., encrypt it such that only they can receive it).Even when attempting to learn which principals are authorized for a given (name, action)pair, a client cannot send out its request except to a principal already known to be au-thorized for that pair, because otherwise its privacy could be violated. As a result, eachtime a client generates a naming request but does not know which managers are currently11An encrypted request is not considered \received" if the receiver is unable to decipher it.



5.6. OTHER SECURITY CONSIDERATIONS 67authorized to respond, it must �rst request that information from a known security agent,requiring an extra message pair beyond the request itself. This cost is greater than thatof the capability scheme for gen, where the expiration of a capability results only in extramessages from the a�ected managers, not from each of their clients.5.6.2 Consistency Among Responsesgen also does not allow one to include requirements for consistency between two or moreresponses as a direct part of the security policy. That is, all policies are required to be1-checkable, in the following sense.A constraint is 1-checkable if any violation can be observed by looking at a singlemessage. For example, the constraint that only disk drive managers can claim to bindnames with the pre�x [device/disk would be 1-checkable.A constraint is non-1-checkable if violations can only be observed by comparing twoor more messages. It is impossible for any single client to verify that a name response itreceives is not part of a non-1-checkable consistency violation, because the client mighthave received only half of a pair of conicting messages, with the other message going toa di�erent client. For example, our de�nition of speci�c naming includes a nonduplicationconsistency constraint, stating that a given speci�c name may be bound to no more thanone object at any time. It is impossible to detect a violation of this constraint withoutexamining at least two purported name bindings.Nevertheless, given a non-1-checkable constraint S, it is sometimes possible to �nd a1-checkable constraint S 0 that is not unduly restrictive, yet guarantees, if it is not violated,that S is not violated. That is, if any two claims together violate S, one or the othermust violate S 0. For example, dividing the name space into nonoverlapping partitions,each covered by a di�erent object manager, is an e�ective way of preventing duplicatename bindings from arising; it is e�ective precisely because it is 1-checkable. If any twomanagers bind the same name to di�erent objects (violating S), one or the other must beviolating the partitioning restriction S 0.In using gen as our model, we basically adopt the view that if any non-1-checkableconsistency constraint S is to be placed on a system, the most that the security policycan do to help enforce this restriction is to enforce a 1-checkable constraint S 0 that isstrict enough to prevent any violations of S. If the security policy does not do this,it is implying that the managers are trusted to cooperate su�ciently to adhere to theconstraint without checking on the part of clients. That is, in the case of nonduplication,if the naming authorization function gives two di�erent managers strong authorization forthe same name, they must simply be trusted to cooperate as necessary to ensure they holdonly one binding between them.12As an additional note, observe that if two managers are asked to cooperate to preserve anon-1-checkable consistency constraint, the security policy must permit them to exchangesu�cient information to check that the constraint is not being violated. For example, ifmanager A is not permitted to know what names are bound by manager B, it is not safefor A to bind any name that B is also authorized to bind.In summary, it is sensible to exclude non-1-checkable restrictions from our securitypolicy model, for two reasons. First, it is impossible for a single client to verify that aname response it receives is not part of a non-1-checkable security violation. Second, themost practically important non-1-checkable restriction|nonduplication of speci�c namebindings|can easily be enforced by strictly partitioning the name space among managersthat cannot be trusted to cooperate on their own.12For that matter, any manager that is authorized to bind a speci�c name must be trusted to bind it toonly one object at a time.



68 CHAPTER 5. SECURITY5.7 Chapter SummaryThis chapter has de�ned the counterfeit problem for decentralized naming and presenteda solution based on capabilities. The cost of this solution has been evaluated, in termsof its impact on the e�ciency and fault tolerance of naming, and it has been argued thatno better solutions are available. In general terms, one can approximate the e�ciencyand resiliency of non-secure decentralized naming more and more closely as the detailedsecurity policy is allowed to change less and less frequently. The related issues of requestprivacy and non-1-checkable policies have also been discussed.



Chapter 6Concluding Remarks6.1 SummaryDesigning a naming facility for large distributed systems is a di�cult problem. Existingapproaches have not yielded a single design that is at once acceptably e�cient, fault-tolerant, and secure.As a solution, this thesis has introduced and studied decentralized naming, a hierar-chical naming architecture based on the concept that each object manager should handlethe naming for the objects it manages. Keeping this knowledge at each manager enhancesnaming e�ciency by supporting pre�x caching with on-use cache consistency maintenance,and by allowing name mapping operations to be completed in a single packet exchangewhenever the cache hits on a local directory. It enhances fault tolerance by supportingmulticast name mapping in regional directories. In global directories, where there aretoo many participants for multicast to be practical, name mapping can be handled byreplicated name servers built with known technology. The primary security problem ofdecentralized naming, the counterfeit problem, is solved using a capability scheme thatcan be implemented using known cryptographic technology.The results of this research and their consequences are discussed further in the followingsubsections. The �nal section suggests some directions for future work.6.1.1 E�ciencyThree characteristics of decentralized name mapping have been shown to account for muchof its e�ciency: its piggybacking of name lookup on other operation requests, the highhit ratio of its pre�x caches, and its on-use cache consistency mechanism. These featuresdepend strongly on one another for their e�ectiveness.It is a simple but important characteristic of decentralized naming that name lookup isnot treated as a separate operation to be implemented in isolation, but is instead treatedas the �rst step in carrying out any operation request that speci�es its target object byname. This piggybacking of name lookup, together with the decentralized storage of namebindings at object managers, means that lookup is free (in terms of communication cost)whenever the name cache hits. It is \free" because the client combines the lookup andoperation requests into a single message sent directly to the named object's manager, whichmaps the name locally, performs the operation, and sends the results directly back to theclient in a second message. Those two messages would have been required to perform theoperation in any case.The e�ectiveness of pre�x caching is a second important characteristic of decentralizednaming. Pre�x caching is applicable and e�ective because of the hierarchical structure of69



70 CHAPTER 6. CONCLUDING REMARKSa decentralized name space, with directories becoming increasingly localized as one movesfrom the root towards the leaves. Matching a relatively short name pre�x typically takesthe client to a directory that is local to a single manager, so that the \free" case of namelookup is achieved. And each pre�x matches a large number of names, tending to givethe cache a high hit ratio. One of the main contributions of this thesis has been to makethese observations precise in an analytical model of cache performance, and to validate themodel by comparison with experimental results from the V implementation.A third important e�ciency feature of decentralized naming is its on-use cache consis-tency mechanism. With on-use consistency, having a stale entry in a cache costs nothinguntil the entry is used, at which point it is refreshed. Unlike mechanisms in which serversasynchronously notify clients when their cache entries become stale, on-use consistency isreliable; it is also less expensive. Asynchronous noti�cation cannot be reliable, because thenetwork can partition, separating client and server and preventing the noti�cation fromreaching the client, which then continues to use the stale data. It is also expensive becausemany unnecessary noti�cations are likely to be issued for entries that will never be usedagain. Further, unlike mechanisms in which cache entries time out, on-use consistency re-tains cache entries until they actually become stale, and it does not restrict the frequencywith which data that might be cached is allowed to change. However, on-use consistency isinexpensive only because of the piggybacking of name lookup on other object operations:with piggybacking, each name lookup request is sent to the named object's manager inany case, so the manager is able to check cache consistency at the same time.The main e�ciency drawback of decentralized naming is that the cache does missoccasionally, resulting in a multicast that can be quite expensive. In the worst case, themulticast goes to every manager participating in the �rst regional directory in the givenpathname, which of course includes all managers participating in its subdirectories, theirsubdirectories, and so forth. As discussed in Section 3.4, this e�ect places a limit on thegrowth of regional directories, and thus helps to establish where the boundary betweenglobal and regional directories must fall. Fortunately, however, the high cache hit ratiosachieved in typical installations make it realistic to envision regional directories with over1000 managers participating.A minor e�ciency drawback is that renaming a directory near the top of the nam-ing hierarchy is relatively expensive, as compared with approaches in which an object'smanager does not know its absolute name. Renaming a directory implies changing theabsolute pathnames of all the objects that are named relative to it; that is, every node andleaf of the subtree rooted at it. With decentralized naming, making such a change requirecontacting the managers of all the objects involved to inform them of their new names.Fortunately, however, renaming at this level is not a frequent operation. As Lampsonnotes [27], changing the name of a top-level directory creates considerable confusion forusers, so it is best to do it rarely.6.1.2 Fault ToleranceOne of the major strengths of decentralized naming is the high resiliency it gives to namemapping. As was shown in Chapter 4, name mapping achieves optimum (ABMA) resiliencyin installations that include only regional and local directories. This high resiliency stemsdirectly from the fact that naming is decentralized|each object manager knows the namesof its own objects|so multicast name mapping can always be used as a last resort, and willalways succeed in mapping the name of any accessible object. In a system that includesglobal directories, the directory servers become an additional point of possible failure,but they can be replicated at moderate cost because they contain a relatively small andseldom-changing portion of the total information held by the naming system. And even ifall servers for a given global directory are inaccessible, a client can still map the names ofnearby objects using scoped multicast to nearby participants in the directory.



6.1. SUMMARY 71The resiliency of object creation and deletion by name is also a strength. Because theseoperations are performed locally by the manager of the named object, which is located usingthe name mapping protocol, they have the same resiliency as name mapping. Althoughthis resiliency is not the optimum for the general case, it is optimum for these commonspecial cases.Decentralized naming is basically an application of a more general design principle fordistributed systems, which we might call the togetherness principle: Keep things togetherif they are most often used together, separately if they are most often used separately.Following this principle yields advantages in both e�ciency and fault tolerance. When tworelated objects are kept together on one host, the number of messages required to performan operation that involves both of them is reduced, as well as the number of possiblefailure points. And when two unrelated objects are stored on separate hosts, of course, theamount of possible parallelism is increased, and the failure of either host makes only oneof the objects inaccessible. Decentralized naming applies this principle by keeping namestogether with the objects they are bound to (in local directories), but separating names ofunrelated objects that chance to be in the same regional directory, thus improving boththe e�ciency and the fault tolerance of name mapping.The fault tolerance of decentralized naming is poorest for those operations that requireaccess to regional name lists: regional directory listing, binding check, and coverage trans-fer. The togetherness principle does not provide much help here; although it suggests thatcopies of a directory's name list need not be kept by nonparticipants, it does not remove theneed for a complete copy of the name list to perform these operations. These operationscan therefore do no better than the classic tradeo� for replicated data: the operations thatread the name list (listing and binding check) can be made more resilient by increasingthe degree of replication, but doing this requires the write operations (coverage transfer)to update multiple copies, making them more costly and (if updates must be atomic) lessresilient. Note that replicated directory systems have this same problem, but it is worsenedby the fact that name mapping is a read operation on the directory, forcing a high degreeof replication to achieve acceptable resiliency.In sum, decentralized naming gives �rst priority to the resiliency (and e�ciency) of themost common operation|name mapping. The other operations are then made as resilientand e�cient as possible without compromising the performance of name mapping.6.1.3 SecurityThis thesis has also examined the security aspects of decentralized naming. The useof decentralized naming does not make it more di�cult to enforce mandatory securityrestrictions, and it does not complicate the discretionary checking of client authorizationby managers, but it does make it more di�cult for clients to be sure the purported objectmanagers that respond to their requests are authorized to do so by the system's securitypolicy; that is, to be sure the responses are not counterfeit.Chapter 5 presented a solution to the counterfeit problem, using capabilities, and eval-uated its impact on the e�ciency and resiliency of name mapping. It was shown that,roughly speaking, the capability scheme approximates the performance of non-secure de-centralized naming more and more closely as the detailed security policy is allowed tochange less and less frequently. Di�erent parts of the name space can be individuallytuned by varying the validity times of individual capabilities.One cannot expect to improve very much on this scheme. Any solution to the counter-feit problem can be expected to have some adverse performance impact on a decentralizednaming facility, because, strictly speaking, the naming is no longer decentralized if thesystem includes security agents that can revoke an object manager's authorization to bindnames|at least one security agent must be included in each read quorum. The capabilityscheme reduces the cost of contacting security agents by allowing the agents to \promise"



72 CHAPTER 6. CONCLUDING REMARKSthat the policy will not change for some set period of time, and it appears to take aboutas much advantage of that technique as possible|for a capability that covers a singlemanager M , exactly one pair of extra messages is needed each time a request arrives atM after the most recent copy of the capability has expired.6.1.4 Other ResultsThis thesis has demonstrated the practicality of decentralized naming by describing asubstantial prototype implementation that is in daily use in the V distributed operatingsystem. Although the current installation includes only about eight �le servers and �ftyworkstations, it has proven large enough to provide useful experience.The V implementation also demonstrates the extensibility of decentralized naming.Most notably, its name space includes the �le systems of several UNIX hosts as subtrees.There is also a server that can make the �le system of any host on the DARPA Internetappear as a directory in the V name space, using the Internet's File Transfer Protocol [33]to access the remote �les.6.2 Future WorkDecentralized naming appears to be a promising area for continuing work. Most of thework that remains at this point is implementation and experimentation with some of theportions of the design that have not yet been incorporated into the V prototype. Two areasof particular interest are techniques for replicating name lists in large regional directories,and expansion of the existing regional implementation to include global directories andspan an internetwork.We do not yet have enough experience with large regional directories to set downguidelines for administering the replication of their name lists. In particular, it is notclear how to decide how many replicas are needed and what update mechanism should beused in a given situation. (The current V implementation does not address this questionbecause it includes only directories with o�-line name lists.) It is known that (roughlyspeaking) increasing the number of replicas makes reading more e�cient and resilient, atthe cost of making writing less e�cient and resilient. To quantify this insight and drawuseful conclusions from it, additional measurements are needed to determine the ratio ofread to write operations, along with some careful modeling to determine the exact costand resiliency as a function of the number of replicas. The cost and resiliency are alsodependent on what algorithm is used to select and maintain agreement on the currentset of active replicas. The simplest algorithm statically selects several replica sites, allowsreading any replica, but forces write operations to fail unless all sites are up and accessible.More complex algorithms dynamically maintain a set of replicas that periodically contactone another, dropping or replacing any copy that cannot maintain communication with amajority of the other copies. Algorithms of the latter type incur an additional backgroundcommunication cost on top of the basic cost of performing reads and writes, but achieveimproved resiliency for writing. Additional study is needed to decide when the bene�ts ofsuch algorithms are worth their cost.It would also be useful to gain experience with an implementation that includes globaldirectories and extends across an internetwork. We have begun to experiment with addinga global directory level to the V implementation, but our installation is not yet largeenough to put any serious demands on the global level.1 Experience with a really large1In fact, V installations are currently unable to grow beyond a single local network because of limitationsin the V kernel implementation. The naming protocols are layered on top of the message transaction protocolVMTP [8] provided by the V kernel, which is designed to work across internetworks; however, the currentV kernel implementation does not.



6.2. FUTURE WORK 73installation would provide further guidance in deciding where to draw the line between theglobal and regional levels of the directory hierarchy. It would also reveal any unforeseenproblems that might arise in interfacing the replicated global directory level to the regionaland local levels.Finally, of course, it would be pleasant to see the decentralized naming paradigm be-come widely used and adopted in a variety of future distributed system designs. It appearsquali�ed to serve well.



Bibliography[1] D. E. Bell and L. J. LaPadula.Secure Computer System: Uni�ed Exposition and MULTICS Interpretation.Technical Report MTR-2997, The MITRE Corporation, January 1976.Also available as U.S. Department of Commerce, National Technical InformationService, report AD A020 445, and as Air Force Systems Command, ElectronicSystems Division, report ESD-TR-75-306.[2] A. D. Birrell.Private communication.January 1987.Digital Equipment Corporation, Systems Research Center.[3] A. D. Birrell, R. Levin, R. M. Needham, and M. D. Schroeder.Grapevine: An exercise in distributed computing.Communications of the ACM, 25(4):260{274, April 1982.[4] D. R. Boggs.Internet Broadcasting.Tech. Report CSL-83-3, Xerox, October 1983.[5] D. R. Brownbridge, L. F. Marshall, and B. Randell.The Newcastle Connection|or UNIXes of the world unite!Software Practice and Experience, 12(12):1147{1162, December 1982.[6] D. Chaum.Security without identi�cation: Transaction systems to make big brother obsolete.Communications of the ACM, 28(10):1030{1044, October 1985.[7] D. R. Cheriton.The V kernel: A software base for distributed systems.IEEE Software, 1(2):19{42, April 1984.[8] D. R. Cheriton.VMTP: A transport protocol for the next generation of communication systems.In Proceedings of the SIGCOMM '86 Symposium: Communication Architectures andProtocols, pages 406{415, ACM, August 1986.Also SIGCOMM Computer Communications Review 16(3).[9] D. R. Cheriton and S. E. Deering.Host groups: A multicast extension for datagram internetworks.In Proceedings of the Ninth Data Communications Symposium, ACM, September1985.Published as Computer Communication Review 15(4).[10] D. R. Cheriton and T. P. Mann.Uniform access to distributed name interpretation in the V-System.In Proceedings of the Fourth International Conference on Distributed ComputingSystems, pages 290{297, IEEE, 1984.[11] D. R. Cheriton and W. Zwaenepoel. 74



BIBLIOGRAPHY 75Distributed process groups in the V kernel.ACM Transactions on Computer Systems, 3(2), May 1985.[12] R. C. Daley and P. G. Neumann.A general-purpose �le system for secondary storage.In Proceedings of the Fall Joint Computer Conference, pages 213{229, AFIPS,September 1965.[13] S. E. Deering.Host Extensions for IP Multicasting.Technical Report RFC 988, Network Information Center, SRI International, July1986.[14] S. E. Deering and D. R. Cheriton.Host Groups: A Multicast Extension to the Internet Protocol.Technical Report RFC 966, Network Information Center, SRI International,December 1985.[15] J. B. Dennis.Segmentation and the design of multiprogrammed computer systems.Journal of the ACM, 12(4):589{602, October 1965.[16] W. Di�e.Conventional versus public key cryptosystems.In G. J. Simmons, editor, Secure Communications and Asymmetric Cryptosystems,chapter 3, pages 41{72, Westview Press, Boulder, Colorado, 1982.AAAS Selected Symposia Series.[17] W. Di�e and M. E. Hellman.New directions in cryptography.IEEE Transactions on Information Theory, T-IT76:644{654, November 1976.[18] Digital Equipment Corporation, Intel Corporation, and Xerox Corporation.The Ethernet: A local area network|data link layer and physical layerspeci�cations, version 1.0.September 1980.[19] A. D. Birrell et al.A global authentication service without global trust.In Proc. 1986 IEEE Symposium on Security and Privacy, pages 223{230, IEEEComputer Society, April 1986.[20] E. Codd et al.Multiprogramming Stretch: Feasibility considerations.Communications of the ACM, 2:13{17, November 1959.[21] J. K. Ousterhout et al.A Trace-Driven Analysis of the UNIX 4.2BSD File System.Technical Report UCB/CSD 85/230, Computer Science Division, EECSDepartment, University of California, Berkeley, April 1985.[22] N. Goodman et al.A recovery algorithm for a distributed database system.In Proceedings, 2nd ACM SIGACT-SIGMOD Symposium on Principles of DatabaseSystems, ACM, March 1983.[23] A. K. Jones.The object model: A conceptual tool for structuring software.In Operating Systems: An Advanced Course, pages 7{16, Springer-Verlag, 1979.[24] T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner.One-level storage system.IRE Transactions on Electronic Computers, EC-11(2):223{235, April 1962.



76 BIBLIOGRAPHYReprinted in Daniel P. Siewiorek, C. Gordon Bell and Allen Newell, ComputerStructures: Principles and Examples, McGraw-Hill, New York, 1982.[25] D. E. Knuth and L. Trabb Pardo.The Early Development of Programming Languages.Technical Report STAN-CS-76-562, Computer Science Department, StanfordUniversity, August 1976.Also in the Encyclopedia of Computer Science and Technology, ed. by Jack Belzer,Albert G. Holzman, and Allen Kent.[26] L. Lamport.Time, clocks, and the ordering of events in a distributed system.Communications of the ACM, 21(7):558{564, July 1978.[27] B. W. Lampson.Designing a global name service.In Proceedings of the 5th Symposium on Principles of Distributed Computing,pages 1{10, ACM, August 1986.[28] C. E. Landwehr.Formal models for computer security.ACM Computing Surveys, 13(3):247{278, September 1981.[29] E. D. Lazowska, J. Zahorjan, D. R. Cheriton, and W. Zwaenepoel.File Access Performance of Diskless Workstations.Technical Report 84-06-01, University of Washington, Department of ComputerScience, June 1984.[30] P. Mockapetris.Domain Names: Concepts and Facilities.Technical Report RFC 882, Network Information Center, SRI International,September 1983.[31] P. Mockapetris.Domain Names: Implementation and Speci�cation.Technical Report RFC 883, Network Information Center, SRI International,September 1983.[32] D. C. Oppen and Y. K. Dalal.The Clearinghouse: A decentralized agent for locating named objects in adistributed environment.ACM Transactions on O�ce Information Systems, 1(3):230{253, July 1983.[33] J. Postel and J. Reynolds.File Transfer Protocol.Technical Report RFC 959, Network Information Center, SRI International, October1985.[34] D. M. Ritchie and K. Thompson.The UNIX timesharing system.Communications of the ACM, 17(7):365{375, July 1974.[35] R. L. Rivest, A. Shamir, and L. Adleman.A method for obtaining digital signatures and public-key cryptosystems.Communications of the ACM, 21(2):120{126, February 1978.[36] L. A. Rowe and K. P. Birman.A local network based on the UNIX operating system.IEEE Transactions on Software Engineering, SE-8(2):137{146, March 1982.[37] J. H. Saltzer.Naming and binding of objects.In Operating Systems: An Advanced Course, pages 99{208, Springer-Verlag, 1978.



BIBLIOGRAPHY 77[38] J. H. Saltzer and M. D. Schroeder.The protection of information in computer systems.Proceedings of the IEEE, 63(9):1278{1308, September 1975.[39] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon.Design and Implementation of the Sun Network Filesystem.Technical Report, Sun Microsystems, Inc., 1985.[40] M. D. Schroeder, A. D. Birrell, and R. M. Needham.Experience with Grapevine: The growth of a distributed system.ACM Transactions on Computer Systems, 2(1):3{23, February 1984.[41] A. B. Sheltzer.Network Transparency in an Internetwork Environment.PhD thesis, University of California, Los Angeles, 1985.Available as UCLA Technical Report CSD-850028.[42] D. B. Terry.Distributed Name Servers: Naming and Caching in Large Distributed ComputingEnvironments.PhD thesis, University of California, Berkeley, 1985.Available as UCB/CSD Technical report 85/228, and as Xerox PARC Technicalreport CSL-85-1.[43] V. L. Voydock and S. T. Kent.Security mechanisms in high-level network protocols.ACM Computing Surveys, 15(2):135{171, June 1983.[44] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel.The LOCUS distributed operating system.In Proceedings of the 9th Symposium on Operating Systems Principles, pages 49{70,ACM, October 1983.Published as Operating Systems Review 17(5).[45] D. W. Wall.Mechanisms for Broadcast and Selective Broadcast.Tech. Report 190, Computer Systems Laboratory, Stanford University, June 1980.[46] B. Welch and J. Ousterhout.Pre�x Tables: A Simple Mechanism for Locating Files in a Distributed System.Technical Report, Computer Science Division, EECS Department, University ofCalifornia, Berkeley, October 1985.


